These instructions assume you have sfml compiled and located somewhere on your hard drive. These
instructions were tested with SFML 2.0 compiled as a static library.

Step 1: Open Code::Blocks and create a new project:

Code::Blocks

The open source, cross-platform IDE-

hrip:twww.codeblocks orng

S @)
E Create a new project % Open an existing project ' Tip of the Day
i

m Visit the Code::Blocks forums Reporta bug Reguest a new feature

| just create an empty project like this:

(e T = — = - —
New from template 5o
Projects Category: [<Aﬂ categories> v] [Go J

Build targets

e vy f
Custom ')
User templates | | ARMProject AVR Project Code::Blocks ~ Console

plugin application

@& 0
D application Direct/X Dynamic Link [Sysaedi=as
project Library

FLTK project Fortran DLL Fortran Fortran library

application
GLEW GLUT View as
= = 9 o
@) Large icons
GLFW project GLUT project GTK+ project Irrlicht project @ List

TIP: Try right-clicking an item

1. Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go

i~ >

Empty project
C I Please select the folder where you want the new project
y onsoie to be created as well as its title.
Project title:
sfml_test

Folder to create projectin:

Z:\test\sfml D

Project filename:
sfml_test.cbp

Resulting filename:
Z:\test\sfml\sfml_test\sfml_test.cbp

< Back H Next > J [Cancel

Step 2: Add a new file to your project.

m [sfml_test] - Code::Blocks svn build
File Edit View Search Project Build Debug wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help

il mam SN | o se | 62 me | O &N Ir o 1 3 : . =
: | B> G < B |Buid target:|Deb = b oD
P Empty file Ctrl-Shift-N ® | = rWQe [s —= v]
1 w2 L o|=E] |
Ma Class...
p Project...
C‘ Build target...
File...
Custom...

From template...

Nassi Shneiderman diagram

Step 3: Open up the build options for your project by right-clicking on the project name and clicking on
“Build options...”

File Edit View Search Project Build Debug wxSmith Tools Tools+ Plugins DoxyBlocks

BB Y ARAQAR G P> OO |ndugetdg

A SIS NS | e = J cbsn x|l

slmgmesd: Z J *main.cpp X]

4| Projects | Symbols | Fies A

o Workspace 2 I

R |sfmi e
Save project
Close project
Add files...
Add files recursively...
Remove files...
Find file...
Project tree >

Add new virtual folder...
Format this project (AStyle)

Reparse this project

Build
Rebuild

Clean

Build options...
Open Project Folder in File Browser

I

Properties...

Step 3: On the left hand side, make sure to select the project as a whole, not just Debug or Release
version. In my case, the project is called sfml_test, so | click that in the box on the left. Now select the
“Search directories” tab and under the “Compiler” tab, add a the path to the sfml include directory.

Project build options =7 @
sfml_test Selected compiler
~Debug | gy gec Compler -]

| comiler settings | Linker settings I Search directories [Pre/postbuld steps | Custom variables | "Make" commands |

| Compiler | Linker | Resource compier |

Policy: iAppend target options to project options ~ ‘

Add directory
Directory: path-to-sfml-incude-dir

Lo I

| Add | \ Edit \ ‘- Delete 7‘ ‘ Clear ‘ \ Copy to...]

Step 4: Click on the linker tab and add the path to the sfml lib directory:

[™
Project build options = \| = | = |
sfml_test Selected compiler
Debug | gy e compler 5

i Rel

| Compiler settings [Linker settings [Search directories I Pre/post build steps | Custom variables | "Make" commands |

| Compiler | Linker | Resource compiler |

Policy: | Append target options to project options

Add directory ==

Directory: path-to-sfml-ib-dir E]

o J[conce

Edit Delete Clear Copy to...

Clag

(o J[concel |

Step 5: This is important! If you compiled SFML as a static library, which | did, you need to define
SFML_STATIC. Go to the compiler settings tab, the #defines tab, and add SFML_STATIC:

Project build options =
sfml_test Selected compiler
i--Debug (U GCC Compiker -
- Release
Compiler settings [Linker settings [Search directories I Pre/post build steps] Custom variables ["Make" commandsl
Policy: | Append target options to project options
l Compiler Flags I Other options | #defines l
SFML_STATIC -
< »
<[

Step 6: In the box on the left, select Debug mode only. Open up the linker settings tab, and link to the
necessary sfml libraries. SFML static debug libraries end with —s-d. The order of the linking is important.

sfml_test Selected compiler

[GU.GCCCW

Compiler settings | Linker settings | Search directories | Pre/post build steps | Custom

Policy: [Append target options to project options Y.]

Link libraries:

Other linker options:
sfml-graphics-s-d

sfml-window-s-d
sfml-system-s-d

T

=

[o J[concel |

Step 7: In the box on the left, click on Release mode. Add the release libraries:

Selected compiler
(&N 6o Compiler

Compiler settings | Linker settings | Search directories | Pre/post build steps | Custom

izbles | "Make” commands|

Poiicy: Append target options to project options v |

Link libraries:

Other linker options:

sfml-system-s -
sfml-window-s
sfml-graphics-s

=

[o J[concel]

Step 8: SFML should now work. Here is a bit of code to test the setup:

main.cpp X

int main(int argc, char* argv(]

sf: :RenderWindow window(sf::VideoMode (500, 500), "Hello World"):
while| window.isOpen{())

B - T BT SV I S

sf::Event event;

while (window.pollEvent (event))

if (event.type == sf::Event::

0
0

sed)

=

window.close()

N WO WD

[P S W W WY

window.c r(sf::Coloxr (0, O, 0)):

window.display()

2
0

Here is my result:

main.cpp X

int main(int argc, char* argv(])

b W N

sf: :RenderWindow window (sf::VideoMode (500, 500), "Hello World"):

% | Hello World =N ECh ==

