These instructions assume you have sfml compiled and located somewhere on your hard drive. These
instructions were tested with SFML 2.0 compiled as a static library.

Step 1: Open Code::Blocks and create a new project:
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TIP: Try right-clicking an item

1. Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go
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Project title:
sfml_test

Folder to create projectin:

Z:\test\sfml D

Project filename:
sfml_test.cbp

Resulting filename:
Z:\test\sfml\sfml_test\sfml_test.cbp

< Back H Next > J [ Cancel

Step 2: Add a new file to your project.
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Step 3: Open up the build options for your project by right-clicking on the project name and clicking on
“Build options...”
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Step 3: On the left hand side, make sure to select the project as a whole, not just Debug or Release
version. In my case, the project is called sfml_test, so | click that in the box on the left. Now select the
“Search directories” tab and under the “Compiler” tab, add a the path to the sfml include directory.

Project build options =7 @
sfml_test Selected compiler
~Debug | gy gec Compler -]

| comiler settings | Linker settings I Search directories [Pre/postbuld steps | Custom variables | "Make" commands |

| Compiler | Linker | Resource compier |

Policy: iAppend target options to project options  ~ ‘

Add directory
Directory:  path-to-sfml-incude-dir

Lo I

| Add | \ Edit \ ‘- Delete 7‘ ‘ Clear ‘ \ Copy to... ]




Step 4: Click on the linker tab and add the path to the sfml lib directory:
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Step 5: This is important! If you compiled SFML as a static library, which | did, you need to define
SFML_STATIC. Go to the compiler settings tab, the #defines tab, and add SFML_STATIC:
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Step 6: In the box on the left, select Debug mode only. Open up the linker settings tab, and link to the
necessary sfml libraries. SFML static debug libraries end with —s-d. The order of the linking is important.
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Step 7: In the box on the left, click on Release mode. Add the release libraries:

Selected compiler
(&N 6o Compiler

Compiler settings | Linker settings | Search directories | Pre/post build steps | Custom

izbles | "Make” commands|

Poiicy: Append target options to project options v |

Link libraries:

Other linker options:

sfml-system-s -
sfml-window-s
sfml-graphics-s

=

[ o J[ concel ]

Step 8: SFML should now work. Here is a bit of code to test the setup:



main.cpp X

int main(int argc, char* argv(]

sf: :RenderWindow window(sf::VideoMode (500, 500), "Hello World" ):
while| window.isOpen{() )
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sf::Event event;

while (window.pollEvent (event))

if (event.type == sf::Event::

0
0
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window.close()
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window.c r(sf::Coloxr (0, O, 0)):

window.display()
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Here is my result:
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int main(int argc, char* argv(] )
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sf: :RenderWindow window (sf::VideoMode (500, 500), "Hello World" ):
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