• Create Account

### #ActualMatthewj234

Posted 03 August 2012 - 03:56 PM

Hey guys, I have been frustrated all day on this issue....

I have been using this code to try and generate a 3D environment. My issue... Everything I try with this just ends up with a massive number of random blocks, with no clear placement. The examples I have seen on youtube and elsewhere have shown a coherent noise generation which is procedural. So my question is this, how would I be able to use the code below, to allow me to generate a 3D environment?

Also, why does this only accept [-1,1]?

Thanks in advance for any help offered.

/*****************************************************************************
*							   Java Source
*
*
* This software comes with the standard NO WARRANTY disclaimer for any
* purpose. Use it at your own risk. If there's a problem you get to fix it.
*
****************************************************************************/
package com.Sparked_Studios.Tile_Engine.ContentGenerators;
import java.util.Random;
/**
* Computes Perlin Noise for three dimensions.
* <p>
*
* The result is a continuous function that interpolates a smooth path
* along a series random points. The function is consitent, so given
* the same parameters, it will always return the same value. The smoothing
* function is based on the Improving Noise paper presented at Siggraph 2002.
* <p>
* Computing noise for one and two dimensions can make use of the 3D problem
* space by just setting the un-needed dimensions to a fixed value.
*
* @author Justin Couch
* @version $Revision: 1.4$
*/
public class PerlinNoiseGenerator
{
// Constants for setting up the Perlin-1 noise functions
private static final int B = 0x1000;
private static final int BM = 0xff;
private static final int N = 0x1000;
private static final int NP = 12;   /* 2^N */
private static final int NM = 0xfff;
/** Default seed to use for the random number generation */
private static final int DEFAULT_SEED = 100;
/** Default sample size to work with */
private static final int DEFAULT_SAMPLE_SIZE = 256;
/** The log of 1/2 constant. Used Everywhere */
private static final float LOG_HALF = (float)Math.log(0.5);
/** Permutation array for the improved noise function */
private int[] p_imp;
/** P array for perline 1 noise */
private int[] p;
private float[][] g3;
private float[][] g2;
private float[] g1;

/**
* Create a new noise creator with the default seed value
*/
public PerlinNoiseGenerator()
{
this(DEFAULT_SEED);
}
/**
* Create a new noise creator with the given seed value for the randomness
*
* @param seed The seed value to use
*/
public PerlinNoiseGenerator(int seed)
{
p_imp = new int[DEFAULT_SAMPLE_SIZE << 1];
int i, j, k;
Random rand = new Random(seed);
// Calculate the table of psuedo-random coefficients.
for(i = 0; i < DEFAULT_SAMPLE_SIZE; i++)
p_imp[i] = i;
// generate the psuedo-random permutation table.
while(--i > 0)
{
k = p_imp[i];
j = (int)(rand.nextLong() & DEFAULT_SAMPLE_SIZE);
p_imp[i] = p_imp[j];
p_imp[j] = k;
}
initPerlin1();
}
/**
* Computes noise function for three dimensions at the point (x,y,z).
*
* @param x x dimension parameter
* @param y y dimension parameter
* @param z z dimension parameter
* @return the noise value at the point (x, y, z)
*/
public double improvedNoise(double x, double y, double z)
{
// Constraint the point to a unit cube
int uc_x = (int)Math.floor(x) & 255;
int uc_y = (int)Math.floor(y) & 255;
int uc_z = (int)Math.floor(z) & 255;
// Relative location of the point in the unit cube
double xo = x - Math.floor(x);
double yo = y - Math.floor(y);
double zo = z - Math.floor(z);
// Fade curves for x, y and z
// Generate a hash for each coordinate to find out where in the cube
// it lies.
int a =  p_imp[uc_x] + uc_y;
int aa = p_imp[a] + uc_z;
int ab = p_imp[a + 1] + uc_z;
int b =  p_imp[uc_x + 1] + uc_y;
int ba = p_imp[b] + uc_z;
int bb = p_imp[b + 1] + uc_z;
// blend results from the 8 corners based on the noise function
double c1 = grad(p_imp[aa], xo, yo, zo);
double c2 = grad(p_imp[ba], xo - 1, yo, zo);
double c3 = grad(p_imp[ab], xo, yo - 1, zo);
double c4 = grad(p_imp[bb], xo - 1, yo - 1, zo);
double c5 = grad(p_imp[aa + 1], xo, yo, zo - 1);
double c6 = grad(p_imp[ba + 1], xo - 1, yo, zo - 1);
double c7 = grad(p_imp[ab + 1], xo, yo - 1, zo - 1);
double c8 = grad(p_imp[bb + 1], xo - 1, yo - 1, zo - 1);
return lerp(w, lerp(v, lerp(u, c1, c2), lerp(u, c3, c4)),
lerp(v, lerp(u, c5, c6), lerp(u, c7, c8)));
}
/**
* 1-D noise generation function using the original perlin algorithm.
*
* @param x Seed for the noise function
* @return The noisy output
*/
public float noise1(float x)
{
float t = x + N;
int bx0 = ((int) t) & BM;
int bx1 = (bx0 + 1) & BM;
float rx0 = t - (int) t;
float rx1 = rx0 - 1;
float sx = sCurve(rx0);
float u = rx0 * g1[p[bx0]];
float v = rx1 * g1[p[bx1]];
return lerp(sx, u, v);
}
/**
* Create noise in a 2D space using the orignal perlin noise algorithm.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @return A noisy value at the given position
*/
public float noise2(float x, float y)
{
float t = x + N;
int bx0 = ((int)t) & BM;
int bx1 = (bx0 + 1) & BM;
float rx0 = t - (int)t;
float rx1 = rx0 - 1;
t = y + N;
int by0 = ((int)t) & BM;
int by1 = (by0 + 1) & BM;
float ry0 = t - (int)t;
float ry1 = ry0 - 1;
int i = p[bx0];
int j = p[bx1];
int b00 = p[i + by0];
int b10 = p[j + by0];
int b01 = p[i + by1];
int b11 = p[j + by1];
float sx = sCurve(rx0);
float sy = sCurve(ry0);
float[] q = g2[b00];
float u = rx0 * q[0] + ry0 * q[1];
q = g2[b10];
float v = rx1 * q[0] + ry0 * q[1];
float a = lerp(sx, u, v);
q = g2[b01];
u = rx0 * q[0] + ry1 * q[1];
q = g2[b11];
v = rx1 * q[0] + ry1 * q[1];
float b = lerp(sx, u, v);
return lerp(sy, a, b);
}
/**
* Create noise in a 3D space using the orignal perlin noise algorithm.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param z The Z coordinate of the location to sample
* @return A noisy value at the given position
*/
public float noise3(float x, float y, float z)
{
float t = x + (float)N;
int bx0 = ((int)t) & BM;
int bx1 = (bx0 + 1) & BM;
float rx0 = (float)(t - (int)t);
float rx1 = rx0 - 1;
t = y + (float)N;
int by0 = ((int)t) & BM;
int by1 = (by0 + 1) & BM;
float ry0 = (float)(t - (int)t);
float ry1 = ry0 - 1;
t = z + (float)N;
int bz0 = ((int)t) & BM;
int bz1 = (bz0 + 1) & BM;
float rz0 = (float)(t - (int)t);
float rz1 = rz0 - 1;
int i = p[bx0];
int j = p[bx1];
int b00 = p[i + by0];
int b10 = p[j + by0];
int b01 = p[i + by1];
int b11 = p[j + by1];
t  = sCurve(rx0);
float sy = sCurve(ry0);
float sz = sCurve(rz0);
float[] q = g3[b00 + bz0];
float u = (rx0 * q[0] + ry0 * q[1] + rz0 * q[2]);
q = g3[b10 + bz0];
float v = (rx1 * q[0] + ry0 * q[1] + rz0 * q[2]);
float a = lerp(t, u, v);
q = g3[b01 + bz0];
u = (rx0 * q[0] + ry1 * q[1] + rz0 * q[2]);
q = g3[b11 + bz0];
v = (rx1 * q[0] + ry1 * q[1] + rz0 * q[2]);
float b = lerp(t, u, v);
float c = lerp(sy, a, b);
q = g3[b00 + bz1];
u = (rx0 * q[0] + ry0 * q[1] + rz1 * q[2]);
q = g3[b10 + bz1];
v = (rx1 * q[0] + ry0 * q[1] + rz1 * q[2]);
a = lerp(t, u, v);
q = g3[b01 + bz1];
u = (rx0 * q[0] + ry1 * q[1] + rz1 * q[2]);
q = g3[b11 + bz1];
v = (rx1 * q[0] + ry1 * q[1] + rz1 * q[2]);
b = lerp(t, u, v);
float d = lerp(sy, a, b);
return lerp(sz, c, d);
}
/**
* Create a turbulent noise output based on the core noise function. This
* uses the noise as a base function and is suitable for creating clouds,
* marble and explosion effects. For example, a typical marble effect would
* set the colour to be:
* <pre>
*	sin(point + turbulence(point) * point.x);
* </pre>
*/
public double imporvedTurbulence(double x,
double y,
double z,
float loF,
float hiF)
{
double p_x = x + 123.456f;
double p_y = y;
double p_z = z;
double t = 0;
double f;
for(f = loF; f < hiF; f *= 2)
{
t += Math.abs(improvedNoise(p_x, p_y, p_z)) / f;
p_x *= 2;
p_y *= 2;
p_z *= 2;
}
return t - 0.3;
}
/**
* Create a turbulance function in 2D using the original perlin noise
* function.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param freq The frequency of the turbluance to create
* @return The value at the given coordinates
*/
public float turbulence2(float x, float y, float freq)
{
float t = 0;
do
{
t += noise2(freq * x, freq * y) / freq;
freq *= 0.5f;
}
while (freq >= 1);
return t;
}
/**
* Create a turbulance function in 3D using the original perlin noise
* function.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param z The Z coordinate of the location to sample
* @param freq The frequency of the turbluance to create
* @return The value at the given coordinates
*/
public float turbulence3(float x, float y, float z, float freq)
{
float t = 0;
do
{
t += noise3(freq * x, freq * y, freq * z) / freq;
freq *= 0.5f;
}
while (freq >= 1);
return t;
}
/**
* Create a 1D tileable noise function for the given width.
*
* @param x The X coordinate to generate the noise for
* @param w The width of the tiled block
* @return The value of the noise at the given coordinate
*/
public float tileableNoise1(float x, float w)
{
return (noise1(x)	 * (w - x) +
noise1(x - w) *	  x) / w;
}
/**
* Create a 2D tileable noise function for the given width and height.
*
* @param x The X coordinate to generate the noise for
* @param y The Y coordinate to generate the noise for
* @param w The width of the tiled block
* @param h The height of the tiled block
* @return The value of the noise at the given coordinate
*/
public float tileableNoise2(float x, float y, float w, float h)
{
return (noise2(x,	 y)	 * (w - x) * (h - y) +
noise2(x - w, y)	 *	  x  * (h - y) +
noise2(x,	 y - h) * (w - x) *	  y  +
noise2(x - w, y - h) *	  x  *	  y) / (w * h);
}
/**
* Create a 3D tileable noise function for the given width, height and
* depth.
*
* @param x The X coordinate to generate the noise for
* @param y The Y coordinate to generate the noise for
* @param z The Z coordinate to generate the noise for
* @param w The width of the tiled block
* @param h The height of the tiled block
* @param d The depth of the tiled block
* @return The value of the noise at the given coordinate
*/
public float tileableNoise3(float x,
float y,
float z,
float w,
float h,
float d)
{
return (noise3(x,	 y,	 z)	 * (w - x) * (h - y) * (d - z) +
noise3(x - w, y,	 z)	 *	  x  * (h - y) * (d - z) +
noise3(x,	 y - h, z)	 * (w - x) *	  y  * (d - z) +
noise3(x - w, y - h, z)	 *	  x  *	  y  * (d - z) +
noise3(x,	 y,	 z - d) * (w - x) * (h - y) *	  z  +
noise3(x - w, y,	 z - d) *	  x  * (h - y) *	  z  +
noise3(x,	 y - h, z - d) * (w - x) *	  y  *	  z  +
noise3(x - w, y - h, z - d) *	  x  *	  y  *	  z) /
(w * h * d);
}
/**
* Create a turbulance function that can be tiled across a surface in 2D.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param w The width to tile over
* @param h The height to tile over
* @param freq The frequency of the turbluance to create
* @return The value at the given coordinates
*/
public float tileableTurbulence2(float x,
float y,
float w,
float h,
float freq)
{
float t = 0;
do
{
t += tileableNoise2(freq * x, freq * y, w * freq, h * freq) / freq;
freq *= 0.5f;
}
while (freq >= 1);
return t;
}
/**
* Create a turbulance function that can be tiled across a surface in 3D.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param z The Z coordinate of the location to sample
* @param w The width to tile over
* @param h The height to tile over
* @param d The depth to tile over
* @param freq The frequency of the turbluance to create
* @return The value at the given coordinates
*/
public float tileableTurbulence3(float x,
float y,
float z,
float w,
float h,
float d,
float freq)
{
float t = 0;
do
{
t += tileableNoise3(freq * x,
freq * y,
freq * z,
w * freq,
h * freq,
d * freq) / freq;
freq *= 0.5f;
}
while (freq >= 1);
return t;
}

/**
* Simple lerp function using doubles.
*/
private double lerp(double t, double a, double b)
{
return a + t * (b - a);
}
/**
* Simple lerp function using floats.
*/
private float lerp(float t, float a, float b)
{
return a + t * (b - a);
}
/**
* Fade curve calculation which is 6t^5 - 15t^4 + 10t^3. This is the new
* algorithm, where the old one used to be 3t^2 - 2t^3.
*
* @param t The t parameter to calculate the fade for
* @return the drop-off amount.
*/
{
return t * t * t * (t * (t * 6 - 15) + 10);
}
/**
* Calculate the gradient function based on the hash code.
*/
private double grad(int hash, double x, double y, double z)
{
// Convert low 4 bits of hash code into 12 gradient directions.
int h = hash & 15;
double u = (h < 8 || h == 12 || h == 13) ? x : y;
double v = (h < 4 || h == 12 || h == 13) ? y : z;
return ((h & 1) == 0 ? u : -u) + ((h & 2) == 0 ? v : -v);
}
/**
* Simple bias generator using exponents.
*/
private float bias(float a, float b)
{
return (float)Math.pow(a, Math.log(b) / LOG_HALF);
}

/*
* Gain generator that caps to the range of [0, 1].
*/
private float gain(float a, float b)
{
if(a < 0.001f)
return 0;
else if (a > 0.999f)
return 1.0f;
double p = Math.log(1.0f - b) / LOG_HALF;
if(a < 0.5f)
return (float)(Math.pow(2 * a, p) / 2);
else
return 1 - (float)(Math.pow(2 * (1.0f - a), p) / 2);
}
/**
* S-curve function for value distribution for Perlin-1 noise function.
*/
private float sCurve(float t)
{
return (t * t * (3 - 2 * t));
}
/**
* 2D-vector normalisation function.
*/
private void normalize2(float[] v)
{
float s = (float)(1 / Math.sqrt(v[0] * v[0] + v[1] * v[1]));
v[0] *= s;
v[1] *= s;
}
/**
* 3D-vector normalisation function.
*/
private void normalize3(float[] v)
{
float s = (float)(1 / Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]));
v[0] *= s;
v[1] *= s;
v[2] *= s;
}
/**
* Initialise the lookup arrays used by Perlin 1 function.
*/
private void initPerlin1()
{
p = new int[B + B + 2];
g3 = new float[B + B + 2][3];
g2 = new float[B + B + 2][2];
g1 = new float[B + B + 2];
int i, j, k;
for(i = 0; i < B; i++)
{
p[i] = i;
g1[i] = (float)(((Math.random() * Integer.MAX_VALUE) % (B + B)) - B) / B;
for(j = 0; j < 2; j++)
g2[i][j] = (float)(((Math.random() * Integer.MAX_VALUE) % (B + B)) - B) / B;
normalize2(g2[i]);
for(j = 0; j < 3; j++)
g3[i][j] = (float)(((Math.random() * Integer.MAX_VALUE) % (B + B)) - B) / B;
normalize3(g3[i]);
}
while(--i > 0)
{
k = p[i];
j = (int)((Math.random() * Integer.MAX_VALUE) % B);
p[i] = p[j];
p[j] = k;
}
for(i = 0; i < B + 2; i++)
{
p[B + i] = p[i];
g1[B + i] = g1[i];
for(j = 0; j < 2; j++)
g2[B + i][j] = g2[i][j];
for(j = 0; j < 3; j++)
g3[B + i][j] = g3[i][j];
}
}
}


My current implementation.
public void initChunk(PerlinNoiseGenerator png) {

for (int x = 0; x < 16; x++) {
for (int z = 0; z < 16; z++) {
for (int y = 0; y < 256; y++) {
double noise = ImprovedNoise.noise(x*0.4, y*0.4, z*0.4);
//log(noise);
if (noise < 0) noise = -noise;
if (noise >0.5) chunkVoxels[x][y][z] = new VoxelRef(x + xPos, y, z + zPos, 1, 1, 1, 1);
}
}
}
}


### #1Matthewj234

Posted 03 August 2012 - 03:54 PM

Hey guys, I have been frustrated all day on this issue....

I have been using this code to try and generate a 3D environment. My issue... Everything I try with this just ends up with a massive number of random blocks, with no clear placement. The examples I have seen on youtube and elsewhere have shown a coherent noise generation which is procedural. So my question is this, how would I be able to use the code below, to allow me to generate a 3D environment?

Also, why does this only accept [-1,1]?

Thanks in advance for any help offered.

/*****************************************************************************
*							   Java Source
*
*
* This software comes with the standard NO WARRANTY disclaimer for any
* purpose. Use it at your own risk. If there's a problem you get to fix it.
*
****************************************************************************/
package com.Sparked_Studios.Tile_Engine.ContentGenerators;
import java.util.Random;
/**
* Computes Perlin Noise for three dimensions.
* <p>
*
* The result is a continuous function that interpolates a smooth path
* along a series random points. The function is consitent, so given
* the same parameters, it will always return the same value. The smoothing
* function is based on the Improving Noise paper presented at Siggraph 2002.
* <p>
* Computing noise for one and two dimensions can make use of the 3D problem
* space by just setting the un-needed dimensions to a fixed value.
*
* @author Justin Couch
* @version $Revision: 1.4$
*/
public class PerlinNoiseGenerator
{
// Constants for setting up the Perlin-1 noise functions
private static final int B = 0x1000;
private static final int BM = 0xff;
private static final int N = 0x1000;
private static final int NP = 12;   /* 2^N */
private static final int NM = 0xfff;
/** Default seed to use for the random number generation */
private static final int DEFAULT_SEED = 100;
/** Default sample size to work with */
private static final int DEFAULT_SAMPLE_SIZE = 256;
/** The log of 1/2 constant. Used Everywhere */
private static final float LOG_HALF = (float)Math.log(0.5);
/** Permutation array for the improved noise function */
private int[] p_imp;
/** P array for perline 1 noise */
private int[] p;
private float[][] g3;
private float[][] g2;
private float[] g1;

/**
* Create a new noise creator with the default seed value
*/
public PerlinNoiseGenerator()
{
this(DEFAULT_SEED);
}
/**
* Create a new noise creator with the given seed value for the randomness
*
* @param seed The seed value to use
*/
public PerlinNoiseGenerator(int seed)
{
p_imp = new int[DEFAULT_SAMPLE_SIZE << 1];
int i, j, k;
Random rand = new Random(seed);
// Calculate the table of psuedo-random coefficients.
for(i = 0; i < DEFAULT_SAMPLE_SIZE; i++)
p_imp[i] = i;
// generate the psuedo-random permutation table.
while(--i > 0)
{
k = p_imp[i];
j = (int)(rand.nextLong() & DEFAULT_SAMPLE_SIZE);
p_imp[i] = p_imp[j];
p_imp[j] = k;
}
initPerlin1();
}
/**
* Computes noise function for three dimensions at the point (x,y,z).
*
* @param x x dimension parameter
* @param y y dimension parameter
* @param z z dimension parameter
* @return the noise value at the point (x, y, z)
*/
public double improvedNoise(double x, double y, double z)
{
// Constraint the point to a unit cube
int uc_x = (int)Math.floor(x) & 255;
int uc_y = (int)Math.floor(y) & 255;
int uc_z = (int)Math.floor(z) & 255;
// Relative location of the point in the unit cube
double xo = x - Math.floor(x);
double yo = y - Math.floor(y);
double zo = z - Math.floor(z);
// Fade curves for x, y and z
// Generate a hash for each coordinate to find out where in the cube
// it lies.
int a =  p_imp[uc_x] + uc_y;
int aa = p_imp[a] + uc_z;
int ab = p_imp[a + 1] + uc_z;
int b =  p_imp[uc_x + 1] + uc_y;
int ba = p_imp[b] + uc_z;
int bb = p_imp[b + 1] + uc_z;
// blend results from the 8 corners based on the noise function
double c1 = grad(p_imp[aa], xo, yo, zo);
double c2 = grad(p_imp[ba], xo - 1, yo, zo);
double c3 = grad(p_imp[ab], xo, yo - 1, zo);
double c4 = grad(p_imp[bb], xo - 1, yo - 1, zo);
double c5 = grad(p_imp[aa + 1], xo, yo, zo - 1);
double c6 = grad(p_imp[ba + 1], xo - 1, yo, zo - 1);
double c7 = grad(p_imp[ab + 1], xo, yo - 1, zo - 1);
double c8 = grad(p_imp[bb + 1], xo - 1, yo - 1, zo - 1);
return lerp(w, lerp(v, lerp(u, c1, c2), lerp(u, c3, c4)),
lerp(v, lerp(u, c5, c6), lerp(u, c7, c8)));
}
/**
* 1-D noise generation function using the original perlin algorithm.
*
* @param x Seed for the noise function
* @return The noisy output
*/
public float noise1(float x)
{
float t = x + N;
int bx0 = ((int) t) & BM;
int bx1 = (bx0 + 1) & BM;
float rx0 = t - (int) t;
float rx1 = rx0 - 1;
float sx = sCurve(rx0);
float u = rx0 * g1[p[bx0]];
float v = rx1 * g1[p[bx1]];
return lerp(sx, u, v);
}
/**
* Create noise in a 2D space using the orignal perlin noise algorithm.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @return A noisy value at the given position
*/
public float noise2(float x, float y)
{
float t = x + N;
int bx0 = ((int)t) & BM;
int bx1 = (bx0 + 1) & BM;
float rx0 = t - (int)t;
float rx1 = rx0 - 1;
t = y + N;
int by0 = ((int)t) & BM;
int by1 = (by0 + 1) & BM;
float ry0 = t - (int)t;
float ry1 = ry0 - 1;
int i = p[bx0];
int j = p[bx1];
int b00 = p[i + by0];
int b10 = p[j + by0];
int b01 = p[i + by1];
int b11 = p[j + by1];
float sx = sCurve(rx0);
float sy = sCurve(ry0);
float[] q = g2[b00];
float u = rx0 * q[0] + ry0 * q[1];
q = g2[b10];
float v = rx1 * q[0] + ry0 * q[1];
float a = lerp(sx, u, v);
q = g2[b01];
u = rx0 * q[0] + ry1 * q[1];
q = g2[b11];
v = rx1 * q[0] + ry1 * q[1];
float b = lerp(sx, u, v);
return lerp(sy, a, b);
}
/**
* Create noise in a 3D space using the orignal perlin noise algorithm.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param z The Z coordinate of the location to sample
* @return A noisy value at the given position
*/
public float noise3(float x, float y, float z)
{
float t = x + (float)N;
int bx0 = ((int)t) & BM;
int bx1 = (bx0 + 1) & BM;
float rx0 = (float)(t - (int)t);
float rx1 = rx0 - 1;
t = y + (float)N;
int by0 = ((int)t) & BM;
int by1 = (by0 + 1) & BM;
float ry0 = (float)(t - (int)t);
float ry1 = ry0 - 1;
t = z + (float)N;
int bz0 = ((int)t) & BM;
int bz1 = (bz0 + 1) & BM;
float rz0 = (float)(t - (int)t);
float rz1 = rz0 - 1;
int i = p[bx0];
int j = p[bx1];
int b00 = p[i + by0];
int b10 = p[j + by0];
int b01 = p[i + by1];
int b11 = p[j + by1];
t  = sCurve(rx0);
float sy = sCurve(ry0);
float sz = sCurve(rz0);
float[] q = g3[b00 + bz0];
float u = (rx0 * q[0] + ry0 * q[1] + rz0 * q[2]);
q = g3[b10 + bz0];
float v = (rx1 * q[0] + ry0 * q[1] + rz0 * q[2]);
float a = lerp(t, u, v);
q = g3[b01 + bz0];
u = (rx0 * q[0] + ry1 * q[1] + rz0 * q[2]);
q = g3[b11 + bz0];
v = (rx1 * q[0] + ry1 * q[1] + rz0 * q[2]);
float b = lerp(t, u, v);
float c = lerp(sy, a, b);
q = g3[b00 + bz1];
u = (rx0 * q[0] + ry0 * q[1] + rz1 * q[2]);
q = g3[b10 + bz1];
v = (rx1 * q[0] + ry0 * q[1] + rz1 * q[2]);
a = lerp(t, u, v);
q = g3[b01 + bz1];
u = (rx0 * q[0] + ry1 * q[1] + rz1 * q[2]);
q = g3[b11 + bz1];
v = (rx1 * q[0] + ry1 * q[1] + rz1 * q[2]);
b = lerp(t, u, v);
float d = lerp(sy, a, b);
return lerp(sz, c, d);
}
/**
* Create a turbulent noise output based on the core noise function. This
* uses the noise as a base function and is suitable for creating clouds,
* marble and explosion effects. For example, a typical marble effect would
* set the colour to be:
* <pre>
*    sin(point + turbulence(point) * point.x);
* </pre>
*/
public double imporvedTurbulence(double x,
double y,
double z,
float loF,
float hiF)
{
double p_x = x + 123.456f;
double p_y = y;
double p_z = z;
double t = 0;
double f;
for(f = loF; f < hiF; f *= 2)
{
t += Math.abs(improvedNoise(p_x, p_y, p_z)) / f;
p_x *= 2;
p_y *= 2;
p_z *= 2;
}
return t - 0.3;
}
/**
* Create a turbulance function in 2D using the original perlin noise
* function.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param freq The frequency of the turbluance to create
* @return The value at the given coordinates
*/
public float turbulence2(float x, float y, float freq)
{
float t = 0;
do
{
t += noise2(freq * x, freq * y) / freq;
freq *= 0.5f;
}
while (freq >= 1);
return t;
}
/**
* Create a turbulance function in 3D using the original perlin noise
* function.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param z The Z coordinate of the location to sample
* @param freq The frequency of the turbluance to create
* @return The value at the given coordinates
*/
public float turbulence3(float x, float y, float z, float freq)
{
float t = 0;
do
{
t += noise3(freq * x, freq * y, freq * z) / freq;
freq *= 0.5f;
}
while (freq >= 1);
return t;
}
/**
* Create a 1D tileable noise function for the given width.
*
* @param x The X coordinate to generate the noise for
* @param w The width of the tiled block
* @return The value of the noise at the given coordinate
*/
public float tileableNoise1(float x, float w)
{
return (noise1(x)	 * (w - x) +
noise1(x - w) *	  x) / w;
}
/**
* Create a 2D tileable noise function for the given width and height.
*
* @param x The X coordinate to generate the noise for
* @param y The Y coordinate to generate the noise for
* @param w The width of the tiled block
* @param h The height of the tiled block
* @return The value of the noise at the given coordinate
*/
public float tileableNoise2(float x, float y, float w, float h)
{
return (noise2(x,	 y)	 * (w - x) * (h - y) +
noise2(x - w, y)	 *	  x  * (h - y) +
noise2(x,	 y - h) * (w - x) *	  y  +
noise2(x - w, y - h) *	  x  *	  y) / (w * h);
}
/**
* Create a 3D tileable noise function for the given width, height and
* depth.
*
* @param x The X coordinate to generate the noise for
* @param y The Y coordinate to generate the noise for
* @param z The Z coordinate to generate the noise for
* @param w The width of the tiled block
* @param h The height of the tiled block
* @param d The depth of the tiled block
* @return The value of the noise at the given coordinate
*/
public float tileableNoise3(float x,
float y,
float z,
float w,
float h,
float d)
{
return (noise3(x,	 y,	 z)	 * (w - x) * (h - y) * (d - z) +
noise3(x - w, y,	 z)	 *	  x  * (h - y) * (d - z) +
noise3(x,	 y - h, z)	 * (w - x) *	  y  * (d - z) +
noise3(x - w, y - h, z)	 *	  x  *	  y  * (d - z) +
noise3(x,	 y,	 z - d) * (w - x) * (h - y) *	  z  +
noise3(x - w, y,	 z - d) *	  x  * (h - y) *	  z  +
noise3(x,	 y - h, z - d) * (w - x) *	  y  *	  z  +
noise3(x - w, y - h, z - d) *	  x  *	  y  *	  z) /
(w * h * d);
}
/**
* Create a turbulance function that can be tiled across a surface in 2D.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param w The width to tile over
* @param h The height to tile over
* @param freq The frequency of the turbluance to create
* @return The value at the given coordinates
*/
public float tileableTurbulence2(float x,
float y,
float w,
float h,
float freq)
{
float t = 0;
do
{
t += tileableNoise2(freq * x, freq * y, w * freq, h * freq) / freq;
freq *= 0.5f;
}
while (freq >= 1);
return t;
}
/**
* Create a turbulance function that can be tiled across a surface in 3D.
*
* @param x The X coordinate of the location to sample
* @param y The Y coordinate of the location to sample
* @param z The Z coordinate of the location to sample
* @param w The width to tile over
* @param h The height to tile over
* @param d The depth to tile over
* @param freq The frequency of the turbluance to create
* @return The value at the given coordinates
*/
public float tileableTurbulence3(float x,
float y,
float z,
float w,
float h,
float d,
float freq)
{
float t = 0;
do
{
t += tileableNoise3(freq * x,
freq * y,
freq * z,
w * freq,
h * freq,
d * freq) / freq;
freq *= 0.5f;
}
while (freq >= 1);
return t;
}

/**
* Simple lerp function using doubles.
*/
private double lerp(double t, double a, double b)
{
return a + t * (b - a);
}
/**
* Simple lerp function using floats.
*/
private float lerp(float t, float a, float b)
{
return a + t * (b - a);
}
/**
* Fade curve calculation which is 6t^5 - 15t^4 + 10t^3. This is the new
* algorithm, where the old one used to be 3t^2 - 2t^3.
*
* @param t The t parameter to calculate the fade for
* @return the drop-off amount.
*/
{
return t * t * t * (t * (t * 6 - 15) + 10);
}
/**
* Calculate the gradient function based on the hash code.
*/
private double grad(int hash, double x, double y, double z)
{
// Convert low 4 bits of hash code into 12 gradient directions.
int h = hash & 15;
double u = (h < 8 || h == 12 || h == 13) ? x : y;
double v = (h < 4 || h == 12 || h == 13) ? y : z;
return ((h & 1) == 0 ? u : -u) + ((h & 2) == 0 ? v : -v);
}
/**
* Simple bias generator using exponents.
*/
private float bias(float a, float b)
{
return (float)Math.pow(a, Math.log(b) / LOG_HALF);
}

/*
* Gain generator that caps to the range of [0, 1].
*/
private float gain(float a, float b)
{
if(a < 0.001f)
return 0;
else if (a > 0.999f)
return 1.0f;
double p = Math.log(1.0f - b) / LOG_HALF;
if(a < 0.5f)
return (float)(Math.pow(2 * a, p) / 2);
else
return 1 - (float)(Math.pow(2 * (1.0f - a), p) / 2);
}
/**
* S-curve function for value distribution for Perlin-1 noise function.
*/
private float sCurve(float t)
{
return (t * t * (3 - 2 * t));
}
/**
* 2D-vector normalisation function.
*/
private void normalize2(float[] v)
{
float s = (float)(1 / Math.sqrt(v[0] * v[0] + v[1] * v[1]));
v[0] *= s;
v[1] *= s;
}
/**
* 3D-vector normalisation function.
*/
private void normalize3(float[] v)
{
float s = (float)(1 / Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]));
v[0] *= s;
v[1] *= s;
v[2] *= s;
}
/**
* Initialise the lookup arrays used by Perlin 1 function.
*/
private void initPerlin1()
{
p = new int[B + B + 2];
g3 = new float[B + B + 2][3];
g2 = new float[B + B + 2][2];
g1 = new float[B + B + 2];
int i, j, k;
for(i = 0; i < B; i++)
{
p[i] = i;
g1[i] = (float)(((Math.random() * Integer.MAX_VALUE) % (B + B)) - B) / B;
for(j = 0; j < 2; j++)
g2[i][j] = (float)(((Math.random() * Integer.MAX_VALUE) % (B + B)) - B) / B;
normalize2(g2[i]);
for(j = 0; j < 3; j++)
g3[i][j] = (float)(((Math.random() * Integer.MAX_VALUE) % (B + B)) - B) / B;
normalize3(g3[i]);
}
while(--i > 0)
{
k = p[i];
j = (int)((Math.random() * Integer.MAX_VALUE) % B);
p[i] = p[j];
p[j] = k;
}
for(i = 0; i < B + 2; i++)
{
p[B + i] = p[i];
g1[B + i] = g1[i];
for(j = 0; j < 2; j++)
g2[B + i][j] = g2[i][j];
for(j = 0; j < 3; j++)
g3[B + i][j] = g3[i][j];
}
}
}


My current implementation.

public void initChunk(PerlinNoiseGenerator png) {

for (int x = 0; x < 16; x++) {
for (int z = 0; z < 16; z++) {
for (int y = 0; y < 256; y++) {
double noise = ImprovedNoise.noise(x*0.4, y*0.4, z*0.4);
//log(noise);
if (noise < 0) noise = -noise;
if (noise >0.5) chunkVoxels[x][y][z] = new VoxelRef(x + xPos, y, z + zPos, 1, 1, 1, 1);
}
}
}
}

PARTNERS