Jump to content

  • Log In with Google      Sign In   
  • Create Account


#Actualtaby

Posted 19 October 2012 - 11:15 AM

I may have to look up tangential velocity then


Calculating the tangential velocity based on orbit parameters like distance/eccentricity:
http://www.gamedev.n...58#entry3961958

Periapsis velocity:
v = sqrt((G*M/a)*(1 + e)/(1 - e)).

The planet Mercury's semi-major axis a = 57909176e3 metres, and has an orbit eccentricity e = 0.20563069:
v = sqrt((6.6742e-11 * 1.988435e30 / 57909176e3) * (1 + 0.20563069) / (1 - 0.20563069)),
v = 58976.3015.

That's very close to the maximum orbit speed of Mercury, as 58980 m/s on wikipedia.org.

(Note, 1.988435e30 == Sun's mass)

Oppositely, for the apoapsis velocity:
v = sqrt((G*M/a)*(1 - e)/(1 + e)),
v = 38858.47.

For a circular orbit, the eccentricity is 0.

These calculations help you find the length of the tangential velocity vector. As for finding the direction of the tangential velocity vector, the cross product operation will help you (if your orbit plane is nice and aligned with the coordinate system, it's very straightforward).

#3taby

Posted 19 October 2012 - 11:14 AM

I may have to look up tangential velocity then


Calculating the tangential velocity based on orbit parameters like distance/eccentricity:
http://www.gamedev.n...58#entry3961958

Periapsis velocity:
v = sqrt((G*M/a)*(1 + e)/(1 - e)).

The planet Mercury's semi-major axis a = 57909176e3 metres, and has an orbit eccentricity e = 0.20563069:
v = sqrt((6.6742e-11 * 1.988435e30 / 57909176e3) * (1 + 0.20563069) / (1 - 0.20563069)),
v = 58976.3015.

That's very close to the maximum orbit speed of Mercury, as 58980 m/s on wikipedia.org.

(Note, 1.988435e30 == Sun's mass)

Oppositely, for the apoapsis velocity:
v = sqrt((G*M/a)*(1 - e)/(1 + e)),
v = 38858.47.

For a circular orbit, the eccentricity is 0.

These calculations help you find the length of the tangential velocity vector. As for finding the direction of the tangential velocity vector, the cross product op will help you (if your orbit plane is nice and aligned with the coordinate system, it's very straightforward).

#2taby

Posted 19 October 2012 - 11:12 AM

I may have to look up tangential velocity then


Calculating the tangential velocity based on orbit parameters like distance/eccentricity:
http://www.gamedev.n...58#entry3961958

Periapsis velocity:
v = sqrt((G*M/a)*(1 + e)/(1 - e)).

The planet Mercury's semi-major axis a = 57909176e3 metres, and has an orbit eccentricity e = 0.20563069:
v = sqrt((6.6742e-11 * 1.988435e30 / 57909176e3) * (1 + 0.20563069) / (1 - 0.20563069)),
v = 58976.3015.

That's very close to the maximum orbit speed of Mercury, as 58980 m/s on wikipedia.org.

(Note, 1.988435e30 == Sun's mass)

Oppositely, for the apoapsis velocity:
v = sqrt((G*M/a)*(1 - e)/(1 + e)),
v = 38858.47.

For a circular orbit, the eccentricity is 0.

#1taby

Posted 19 October 2012 - 11:06 AM

I may have to look up tangential velocity then


Calculating the tangential velocity based on orbit parameters like distance/eccentricity:
http://www.gamedev.net/topic/447624-calculating-an-initial-velocity-for-desired-planetary-orbit/page__p__3961958#entry3961958

PARTNERS