• Create Account

### #Actualjoohooo

Posted 29 November 2012 - 09:36 AM

Ok well,

I don't know it was possible to use points in the function F ? I believed it was just vector field ?

I have a last question (in my mind easy but I want to be sure) : I use only vertices in the code above (v0 v1 v2).
Or your variable d is a distance not a point.
How can we say that A*(d-<x0,n>)3 == 1/2 (P1^P2).d/3 where d must be a vertice ? (n is not obligatory (1,1,1)?)
Moreover if i use the formule of area it's also distance and not vertices....

Many thanks

### #2joohooo

Posted 29 November 2012 - 09:36 AM

Ok well,

I don't know it was possible to use points in the function F ? I believed it was just vector field ?

I have a last question (in my mind easy but I want to be sure) : I use only vertices in the code above (v0 v1 v2).
Or your variable d is a distance not a point.
How can we say that A*(d-<x0,n>)3 == 1/2 (P1^P2).d/3 where d must be a vertice ? (n is not obligatory (1,1,1)?)
Moreover if i use the formule of area it's also distance and not vertices....

Many thanks

### #1joohooo

Posted 29 November 2012 - 09:23 AM

Ok well,

I don't know it was possible to use points in the function F ? I believed it was just vector field ?

I have a last question (in my mind easy but I want to be sure) : I use only vertices in the code above (v0 v1 v2).
Or your variable d is a distance not a point.
How can we say that A*(d-<x0,n>)3 == 1/2 (P1^P2).d/3 where d must be a vertice ? (n is not obligatory (1,1,1)?)

Many thanks

PARTNERS