The solution is incredibly simple, using simple vector operations.

You have the slope

**normal**vector (As opposed to its angle)

You have the incident velocity.

The outgoing velocity is then: newVelocity = velocity - normal*(1+e)*dot(velocity, normal)

where e is the coefficient of restitution. For a perfectly elastic bounce e = 1, for a perfectly inelastic bounce (your 'slide') e = 0.

If you're struggling to compute the normal vector. Assuming you have two positions for the slope 'a' and 'b' that you're using to compute your angle like atan2(b.y-a.y, b.x-a.x), then the normal for this slope is instead: unit(a.y-b.y, b.x-a.x). The normal is a unit-length vector that points 'out' (or 'in' for these purposes, makes no difference to the result) of the surface, so the left side of a box will have normal (-1, 0) etc.