•      Sign In
• Create Account

Calling all IT Pros from Canada and Australia.. we need your help! Support our site by taking a quick sponsored surveyand win a chance at a \$50 Amazon gift card. Click here to get started!

### #ActualNypyren

Posted 10 February 2014 - 11:19 PM

One alternative I can think of:

- Consider D to be a hinge.
- Place a new rect A'B'C'D' and point H' directly adjacent to DEFG and treat this as being a rotated version of ABCD.
- You now know the positions of both H' and H. Calculate the angle formed between them using D as the common vertex.
- Use that angle to rotate points A' through C' about D, back to their expected positions.

You could probably do this entirely with matrices and never actually measure an angle (I suspect), but I'm not good enough with linear algebra to verify that.

[attachment=19859:4vq7.png]

### #4Nypyren

Posted 10 February 2014 - 09:35 PM

One alternative I can think of:

- Consider D to be a hinge.
- Place a new rect A'B'C'D' and point H' directly adjacent to DEFG and treat this as being a rotated version of ABCD.
- You now know the positions of both H' and H. Calculate the angle formed between them using D as the common vertex.
- Use that angle to rotate points A' through C' about D, back to their expected positions.

You could probably do this entirely with matrices and never actually measure an angle (I suspect), but I'm not good enough with linear algebra to verify that.

### #3Nypyren

Posted 10 February 2014 - 09:35 PM

One alternative I can think of:

- Consider D to be a hinge.
- Place a new rect A'B'C'D' and point H' directly adjacent to DEFG and treat this as being a rotated version of ABCD.
- You now know the positions of both H' and H. Calculate the angle formed between them using D as the common vertex.
- Use that angle to rotate points A' through C' about D, back to their expected positions.

You could probably do this entirely with rotation matrices and never actually measure an angle (I suspect), but I'm not good enough with linear algebra to verify that.

### #2Nypyren

Posted 10 February 2014 - 09:29 PM

One alternative I can think of:

- Consider D to be a hinge.
- Place a new rect A'B'C'D' and point H' directly adjacent to DEFG and treat this as being a rotated version of ABCD.
- You now know the positions of both H' and H. Calculate the angle formed between them using D as the common vertex.
- Use that angle to rotate points A' through C' about D, back to their expected positions.

### #1Nypyren

Posted 10 February 2014 - 09:27 PM

One alternative I can think of:

- Consider D to be a hinge.
- Place a new rect A'B'C'D' and point H' directly adjacent to DEFG and treat this as being a pre-rotated version of ABCD.
- You now know the positions of both H' and H. Calculate the angle formed between them using D as the common vertex.
- Use that angle to rotate points A' through C' about D, back to their expected positions.

PARTNERS