• Create Account

## Atmospheric Scattering XNA 4.0

Old topic!

Guest, the last post of this topic is over 60 days old and at this point you may not reply in this topic. If you wish to continue this conversation start a new topic.

1 reply to this topic

### #1montify  Members

589
Like
0Likes
Like

Posted 30 November 2012 - 11:34 AM

Hello

Anyone out there who could help me..

float4x4 World;
float4x4 View;
float4x4 Projection;
float seaLevel;

float Km = 0.0025f;
float Kr = 0.0015f;
float ESun = 20.0f;

float3 v3InvWavelength = float3(
1.0f / pow(0.650f, 4),
1.0f / pow(0.570f, 4),
1.0f / pow(0.475f, 4)
);

// The number of sample points taken along the ray
static const int nSamples = 2;
static const float fSamples = (float)nSamples;
// Gravity
static const float g  = -0.99f;
static const float g2 =  0.81f;

float3 v3CameraPos;   // The camera's current position
float3 v3LightPos;   // The direction vector to the light source

//float3 v3InvWavelength;  // 1 / pow(wavelength, 4) for the red, green, and blue channels
float fCameraHeight;  // The camera's current height
float fCameraHeight2;  // fCameraHeight^2

float fOuterRadius= 1.4f;   // The outer (atmosphere) radius
float fOuterRadius2 = (1.4f * 1.4f);  // fOuterRadius^2
float fInnerRadius = 1.0f;   // The inner (planetary) radius
float fInnerRadius2 = (1.0f * 1.0f);  // fInnerRadius^2

float fKrESun = (0.0015f * 10.0f);  // Kr * ESun
float fKmESun = (0.0025f * 10.0f);;  // Km * ESun

float fKr4PI = 0.0015f * 4.0f * 3.14159265;
float fKm4PI = 0.0025f * 4 * 3.14159265;   // Km * 4 * PI

float fScaleDepth = 0.25f;   // The scale depth (the altitude at which the average atmospheric density is found)
float fInvScaleDepth = 1.0f / 0.25f;  // 1 / fScaleDepth
float fScale = 1.0f / (1.4f - 1.0f);
float fScaleOverScaleDepth = (1.0f)  / ( 1.0f / 0.25f); // fScale / fScaleDepth

float scale(float fCos)
{
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
// Calculates the Mie phase function
float getMiePhase(float fCos, float fCos2, float g, float g2)
{
return 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos2) / pow(abs(1.0 + g2 - 2.0*g*fCos), 1.5);
}

// Calculates the Rayleigh phase function
float getRayleighPhase(float fCos2)
{
//return 1.0;
return 0.75 + 0.75*fCos2;
}

// Returns the near intersection point of a line and a sphere
float getNearIntersection(float3 v3Pos, float3 v3Ray, float fDistance2, float fRadius2)
{
float B = 2.0 * dot(v3Pos, v3Ray);
float C = fDistance2 - fRadius2;
float fDet = max(0.0, B*B - 4.0 * C);
return 0.5 * (-B - sqrt(fDet));
}

// Returns the far intersection point of a line and a sphere
float getFarIntersection(float3 v3Pos, float3 v3Ray, float fDistance2, float fRadius2)
{
float B = 2.0 * dot(v3Pos, v3Ray);
float C = fDistance2 - fRadius2;
float fDet = max(0.0, B*B - 4.0 * C);
return 0.5 * (-B + sqrt(fDet));
}

{
float4 Position : POSITION0;
float3 PositionWS : TEXCOORD0;
};

{
float4 Position : POSITION0;
float3 PositionWS : TEXCOORD0;
};

//#############  VERTEX SHADER  #############
{

output.PositionWS = input.Position;

float4 worldPosition = mul(input.Position, World);
worldPosition = float4( normalize(worldPosition.xyz) * 6918.75f, 1);

float4 viewPosition = mul(worldPosition, View);
output.Position = mul(viewPosition, Projection);
return output;
}

//#############  PIXEL SHADER  #############
{

// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
float3 v3Pos = input.PositionWS;
float3 v3Ray = v3Pos - v3CameraPos;
float fFar = length(v3Ray);
v3Ray /= fFar;

// Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
float fNear = getNearIntersection(v3CameraPos, v3Ray, fCameraHeight2, fOuterRadius2);

// Calculate the ray's start and end positions in the atmosphere, then calculate its scattering offset
float3 v3Start = v3CameraPos + v3Ray * fNear;
fFar -= fNear;
float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius;
float fStartDepth = exp(-fInvScaleDepth);
float fStartOffset = fStartDepth*scale(fStartAngle);

// Initialize the scattering loop variables
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
float3 v3SampleRay = v3Ray * fSampleLength;
float3 v3SamplePoint = v3Start + v3SampleRay * 0.5;

// Now loop through the sample rays
float3 v3FrontColor = float3(0.0, 0.0, 0.0);
for(int i=0; i<nSamples; i++)
{
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight;
float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
float fScatter = (fStartOffset + fDepth*(scale(fLightAngle) - scale(fCameraAngle)));
float3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
v3SamplePoint += v3SampleRay;
}

// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
float3 c0 = v3FrontColor * (v3InvWavelength * fKrESun);
float3 c1 = v3FrontColor * fKmESun;
float3 v3Direction = v3CameraPos - v3Pos;
float fCos = dot(v3LightPos, v3Direction) / length(v3Direction);
float fCos2 = fCos*fCos;
float3 color = getRayleighPhase(fCos2) * c0 + getMiePhase(fCos, fCos2, g, g2) * c1;
float4 AtmoColor = float4(color, color.b);
return AtmoColor;
}

//#############  Technik  #############
technique Technique1
{
pass Pass1
{
CullMode = ccw;
}
}


And here the Sphere.cs:

 public class ScatteringSphere
{
private GraphicsDevice device;
private VertexBuffer vb;
private IndexBuffer ib;
private Effect effect;
private static int size = 128;
Matrix[] rotation = new Matrix[6];
Vector3 lightPos;

public ScatteringSphere(GraphicsDevice device)
{
this.device = device;

CreateSphere();

rotation[0] = Matrix.CreateRotationX(MathHelper.ToRadians(180)) * Matrix.CreateTranslation(Vector3.Down);
rotation[1] = Matrix.CreateTranslation(Vector3.Up);
rotation[2] = Matrix.CreateRotationX(MathHelper.ToRadians(90)) * Matrix.CreateTranslation(Vector3.Backward);
rotation[3] = Matrix.CreateRotationX(MathHelper.ToRadians(270)) * Matrix.CreateTranslation(Vector3.Forward);
rotation[4] = Matrix.CreateRotationZ(MathHelper.ToRadians(270)) * Matrix.CreateTranslation(Vector3.Right);
rotation[5] = Matrix.CreateRotationZ(MathHelper.ToRadians(90)) * Matrix.CreateTranslation(Vector3.Left);

}

private void CreateSphere()
{
VertexPositionColor[] vertices = new VertexPositionColor[size * size];
for (int z = 0; z < size; z++)
for (int x = 0; x < size; x++)
vertices[x + z * size] = new VertexPositionColor(new Vector3(MathHelper.Lerp(-1, 1, (float)x / (size - 1)), 0, MathHelper.Lerp(-1, 1, (float)z / (size - 1))), Color.Aquamarine);

vb = new VertexBuffer(device, typeof(VertexPositionColor), size * size, BufferUsage.WriteOnly);
vb.SetData<VertexPositionColor>(vertices);

ushort[] indices = new ushort[(size - 1) * (size - 1) * 6];
int i = 0;
for (int z = 0; z < size - 1; z++)
for (int x = 0; x < size - 1; x++)
{
ushort upperleft = (ushort)(z * size + x);
ushort upperright = (ushort)(upperleft + 1);
ushort lowerleft = (ushort)(upperleft + size);
ushort lowerright = (ushort)(lowerleft + 1);

indices[i++] = upperleft;
indices[i++] = upperright;
indices[i++] = lowerleft;

indices[i++] = lowerleft;
indices[i++] = upperright;
indices[i++] = lowerright;
}

ib = new IndexBuffer(device, IndexElementSize.SixteenBits, indices.Length, BufferUsage.WriteOnly);
ib.SetData<ushort>(indices);

}

public void Draw(FreeCam cam)
{
device.SetVertexBuffer(vb);
device.Indices = ib;

lightPos = new Vector3(0.5f, 0.5f, -0.5f);
lightPos.Normalize();

effect.Parameters["seaLevel"].SetValue(6750);
effect.Parameters["View"].SetValue(Manager.cam.View);
effect.Parameters["Projection"].SetValue(Manager.cam.Projection);
effect.Parameters["v3CameraPos"].SetValue(Manager.cam.Position);
effect.Parameters["v3LightPos"].SetValue(lightPos);
effect.Parameters["fCameraHeight"].SetValue(Manager.cam.Position.Length());
effect.Parameters["fCameraHeight2"].SetValue(Manager.cam.Position.LengthSquared());

effect.Parameters["World"].SetValue(rotation[0]);
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{
pass.Apply();
device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, size * size, 0, (size - 1) * (size - 1) * 6 / 3);
}

effect.Parameters["World"].SetValue(rotation[1]);
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{
pass.Apply();
device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, size * size, 0, (size - 1) * (size - 1) * 6 / 3);
}

effect.Parameters["World"].SetValue(rotation[2]);
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{
pass.Apply();
device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, size * size, 0, (size - 1) * (size - 1) * 6 / 3);
}

effect.Parameters["World"].SetValue(rotation[3]);
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{
pass.Apply();
device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, size * size, 0, (size - 1) * (size - 1) * 6 / 3);
}

effect.Parameters["World"].SetValue(rotation[4]);
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{
pass.Apply();
device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, size * size, 0, (size - 1) * (size - 1) * 6 / 3);
}

effect.Parameters["World"].SetValue(rotation[5]);
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{
pass.Apply();
device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, size * size, 0, (size - 1) * (size - 1) * 6 / 3);

}

}

}


AA

Edited by montify, 30 November 2012 - 12:54 PM.

### #2montify  Members

589
Like
1Likes
Like

Posted 03 December 2012 - 04:34 PM

Job Done

Old topic!

Guest, the last post of this topic is over 60 days old and at this point you may not reply in this topic. If you wish to continue this conversation start a new topic.