Jump to content
  • Advertisement
  • 09/14/99 06:04 PM
    Sign in to follow this  

    Orientation with Quaternions

    Math and Physics

    Myopic Rhino
    Since no one else has mentioned this, I guess I will. Why not use quaternions, rather than rotation matrices, to represent your rotations? Quaternions on the unit sphere and 3-d rotations are isomorphic, and quaternions don't require the redundant storage and calculation that 3x3 matrices do.

    A quaternion may be thought of as an entity of the form [s,x], where s is a scalar and x is a 3-vector. Multiplication of quaternions is given by [s1,x1] * [s2,x2] = [s1 * s2 - x1 dot x2, s1*x2 + s2*x1 + x1 cross x2]. A unit quaternion is one that satisfies s*s + x dot x = 1. A unit quaternion may also be thought of as a rotation of angle 2 arccos s about the axis v. To rotate a vector v by a rotation quaternion q to get a vector w, use the formula [0,w] = inv(q) * [0,v] * q, where inv(q) * q = [1,0], and inv([s,v]) = [s,-v]. Or, if you prefer, form the equivalent rotation matrix

    1 - 2 (x2*x2 + x3*x3) 2 (x1*x2 + s * x3) 2 (x1*x3 - s*x2)
    2 (x1*x2 - s*x3) 1 - 2 (x1*x1 + x3*x3) 2 (x2*x3 + s*x1)
    2 (x1*x3 + s*x2) 2 (x2*x3 - s*x1) 1 - 2 (x1*x1 + x2*x2)
    and use that.

    The basic algorithm, then, to display vectors V = [v1 ; v2 ; v3 ; ... ; vn] rotating by q every frame is

    rot = [1,0]
    do-forever
    R = rotation matrix associated with rot
    DISP = R * V
    display all vectors in DISP
    rot = rot * q
    norm = rot.s * rot.s + rot.x1 * rot.x1 + rot.x2 * rot.x2 + rot.x3 * rot.x3
    if (abs(norm - 1) > tolerance)
    norm = sqrt(norm)
    rot.s = rot.s/norm
    rot.x1 = rot.x1/norm
    rot.x2 = rot.x2/norm
    rot.x3 = rot.x3/norm
    endif
    enddo

    That's the general idea, anyway. For a less terse exposition, see Ken Shoemake, "Animating Rotation with Quaternion Curves", COMPUTER GRAPHICS Vol 19 No 3, pp. 245-254.

    Incidentally, similar quaternion techniques can be used for 4-d rotations. I haven't been able to get a handle on higher dimensions, though.


      Report Article
    Sign in to follow this  


    User Feedback


    There are no comments to display.



    Create an account or sign in to comment

    You need to be a member in order to leave a comment

    Create an account

    Sign up for a new account in our community. It's easy!

    Register a new account

    Sign in

    Already have an account? Sign in here.

    Sign In Now

  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

GameDev.net is your game development community. Create an account for your GameDev Portfolio and participate in the largest developer community in the games industry.

Sign me up!