• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
  • entries
  • comments
  • views

Christmas Adventures with Gilbert, Johnson and Keerthi

Sign in to follow this  
Followers 0


Seem to be getting there slowly. It is tough making this numerically stable but making progress. Just got some issues left with an infinite loop on the flat faces but I'm hoping the simplex at the time is close enough to the optimum.

Funny, would have expected the infinite loop to occur around the curves, not the flat features. Seems to be the other way around.

Oh, happy Christmas every one. Spending it on my own with geometry this year.

[EDIT] Finally, seem to have cracked it smile.png.

For some reason in my implementation, there are certain faces on the Minkowski difference that I can't seem to get the simplex to resolve correctly when the shapes are disjoint to find the simplex closest to the origin, which is used when checking for the minimum separation vector between two shapes overlapping by only their margin.

This provides a far more accurate MSV than using sampling vectors around a unit cube, which is the fall back when the shapes overlap by greater than the margin - this is because GJK fails to find the closest simplex to the origin when the shapes intersect.

However, it seems that if I fail to compute a MSV with the GJK, I can then just fall back on the unit-sphere sampling method and this seems to return a consistent result along the face, so you still get a smooth sliding between the shapes.

The idea is to just step around a unit sphere creating normals and then project the furthest point on the Minkowski sum in that direction onto the vector. This provides the closest point on the Minkowski sum from the origin to the surface of the sum. Obviously you can only use vectors around a sphere to a fixed level of granularity although the operation is pretty cheap per vertex - assuming the vectors are precalculated, it is basically a dot product and a vector multiplication.

This will be even further improved by implementing an idea from Bullet - in addition to the unit-sphere vector checks, provide some "preferred" vectors based on the shape - these would be the negated face normals of polyhedrons for example. If the unit-sphere vectors do not directly coincide with these vectors, these vectors should "win" the test.

Huge amount of scope for improvement but all in all, I'm very happy to be sitting here on Christmas day 2012 having finally achieved something I've wanted to accomplish for about ten years - correctly detecting and resolving a collision between two convex 3D polyhedrons.



All gets a bit easier now. Trivially implemented a support function for a cylinder and a slightly rotated cube (implemented as a polyhedron). The red pyramid is controlled by the keyboard and correctly collides with and slides around the three green volumes.

The next step is to provide each volume with its own transformation but this is trivial to implement without considering optimisations, which I'm not for now. Just take the normal into the support function, inverse transform it by the shape transform, get the result then transform the result by the transform.

I'm already doing something similar with the position, adding it to the result in the support so the point is calculated in local space but transformed to world space before returning. Obviously in the case of position, this has no effect on a normal so there is no need to inverse transform it first. Once we add in rotations for the volumes, it becomes necessary but easy enough to do.

I'm going to wait till this is fully working before I start to worry about making it more efficient. At the moment it has a lot of scope for improvements in this regard but that will be fun for later.

It will be interesting to see if I can build a reasonable character controller based on a capsule using this system - something I never managed using Bullet. I'm thinking somehow that we want a capsule sitting on a line segment perhaps but that is a problem for another day.

Sign in to follow this  
Followers 0


There are no comments to display.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now