• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
  • entries
  • comments
  • views

Off-line rendering and block editor

Sign in to follow this  
Followers 0
Arjan B


A lot of progress in this new entry! We have implemented the octree, which makes our renderer scale well with a large number of objects in our scenes. We have finished our block editor, which allows us to create, save and load worlds to render. And finally, we added some form of offline rendering.

Off-line renderer - Be sure to watch in 720p!


I've implemented a system in which you give a set of (point, direction) pairs, which the camera will be at at some point. You also specify a list of times, which indicate the time it takes for the camera to go from one pair to the next. If you now specify the number of frames per second, the system will interpolate all camera positions and directions for all frames.

Using this system, I set the camera position and direction, let it run a given number of samples per pixel, save the resulting image as a .jpeg file, and then move on to the next position and direction. In the end, I use some other program (MonkeyJam) to paste all these images together into a movie file.

The YouTube movie you see above is rendered at 1280x720, with 200 samples per pixel, at 30 frames per second.

Block editor


We can move around, much like a ghost cam in some FPS. You use ASWD to move around, Spacebar and CTRL to ascend and descend, and the mouse to look around. Left mouse-click adds an object, while right mouse-click removes one.

Using other keys on the keyboard, you can choose which color the next object will have, its material type, its albedo (or brightness for a light), and its shape. You can also increase and decrease the brightness of the "skylight".


My friend did all the work on the octree. Since CUDA doesn't support recursion very well, we had to do all operations on this tree stackless.


We are happy with the results, though we did expect more speed gain from the switch to CUDA. Since we are not using textures or meshes, all we have in GPU memory is our octree, which is rather small. The time spent on memory access was rather insignificant compared to time spent on performing calculations. This made a lot of memory optimizations, which we learned about in class, not useful.

We think that the minor gains are to blame on the very branching nature of our kernels. Running one instruction on a whole lot of different data is fast, but if the instruction that we're at with the calculations for one pixel is different from another, we won't benefit from this. So whenever one ray hits a different type of material than another ray does, a different piece of code is run to sample the new direction. We think that the path tracer would be a whole lot faster if we could figure out ways to reduce the branching.

Sign in to follow this  
Followers 0


Nice! Stackless is definitely the way to go. For materials, this is something I had issues with as well, eventually I determined the best approach may simply be to have a "one size fits all", very generic material, and encode the material parameters for each object in textures. That way the nasty branching is converted into texture fetches, something GPU's can deal with (sort of). The catch with this is that you can't apply material-specific optimizations, which can be a big problem when doing importance sampling, but for a limited set of materials it would work pretty well I think, so it might be worth looking into.


Share this comment

Link to comment

Sounds like a good plan! But those courses are now done, which means I have a lot less time for this project. Since the performance is at acceptable levels, I will probably start with adding new features such as textures and meshes. Probably, I will then need to start working on some speedup and will give your suggestion a try. :)


Share this comment

Link to comment

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now