Jump to content
Sign in to follow this  
  • entries
    8
  • comments
    15
  • views
    6166

A Strong Start

cyberspace009

567 views

Change Of Plans:

I decided to use Unity instead of my own personal game engine, Ignis Game Engine.

I made this change because I believe Unity will alleviate some stress in the development of the game.

In addition, I am convinced that I finished the 2D system interface for the Ignis Game Engine; however, the 3D system implementation

will take some time to complete.

 

Good Start:

I am excited and nervous at the same time when I started developing this game, Iron Age Stories.

On the other hand, I managed to create a Sand-Box scene with a prototype coming together.

progress.png.2232b65a95ab0091c82dfaea3a894385.png

 

What's Next:

The next step is to tread carefully and plan accordingly on how I can succeed in this project.

I did create a TODO list for the prototype to keep track of my progress; however, the list keeps growing.

I can feel the stress already but I can spread the work into smaller pieces to determine the work load.

 

Thanks for reading and happy coding!

 

 

 




0 Comments


Recommended Comments

There are no comments to display.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Advertisement
  • Advertisement
  • Blog Entries

  • Similar Content

    • By BlackSpoon
      Hi guys, let me introduce my new project - Just Smash It! It's all about destruction! Break your way smashing objects with aimed shots!
      * Realistic physics of destruction
      * Smooth game flow
      * Pleasant graphic and sound design
      * Infinite mode after passing the basic set of levels
      * Small size, great time-killer!
      Play Market: https://play.google.com/store/apps/details?id=com.blackspoongames.smashworld
      Feedback are welcome!
    • By Seer
      I have programmed an implementation of the Separating Axis Theorem to handle collisions between 2D convex polygons. It is written in Processing and can be viewed on Github here. There are a couple of issues with it that I would like some help in resolving.
      In the construction of Polygon objects, you specify the width and height of the polygon and the initial rotation offset by which the vertices will be placed around the polygon. If the rotation offset is 0, the first vertex is placed directly to the right of the object. If higher or lower, the first vertex is placed clockwise or counter-clockwise, respectively, around the circumference of the object by the rotation amount. The rest of the vertices follow by a consistent offset of TWO_PI / number of vertices. While this places the vertices at the correct angle around the polygon, the problem is that if the rotation is anything other than 0, the width and height of the polygon are no longer the values specified. They are reduced because the vertices are placed around the polygon using the sin and cos functions, which often return values other than 1 or -1. Of course, when the half width and half height are multiplied by a sin or cos value other than 1 or -1, they are reduced. This is my issue. How can I place an arbitrary number of vertices at an arbitrary rotation around the polygon, while maintaining both the intended shape specified by the number of vertices (triangle, hexagon, octagon), and the intended width and height of the polygon as specified by the parameter values in the constructor?
      The Polygon code:
      class Polygon { PVector position; PShape shape; int w, h, halfW, halfH; color c; ArrayList<PVector> vertexOffsets; Polygon(PVector position, int numVertices, int w, int h, float rotation) { this.position = position; this.w = w; this.h = h; this.halfW = w / 2; this.halfH = h / 2; this.c = color(255); vertexOffsets = new ArrayList<PVector>(); if(numVertices < 3) numVertices = 3; shape = createShape(); shape.beginShape(); shape.fill(255); shape.stroke(255); for(int i = 0; i < numVertices; ++i) { PVector vertex = new PVector(position.x + cos(rotation) * halfW, position.y + sin(rotation) * halfH); shape.vertex(vertex.x, vertex.y); rotation += TWO_PI / numVertices; PVector vertexOffset = vertex.sub(position); vertexOffsets.add(vertexOffset); } shape.endShape(CLOSE); } void move(float x, float y) { position.set(x, y); for(int i = 0; i < shape.getVertexCount(); ++i) { PVector vertexOffset = vertexOffsets.get(i); shape.setVertex(i, position.x + vertexOffset.x, position.y + vertexOffset.y); } } void rotate(float angle) { for(int i = 0; i < shape.getVertexCount(); ++i) { PVector vertexOffset = vertexOffsets.get(i); vertexOffset.rotate(angle); shape.setVertex(i, position.x + vertexOffset.x, position.y + vertexOffset.y); } } void setColour(color c) { this.c = c; } void render() { shape.setFill(c); shape(shape); } }  
      My other issue is that when two polygons with three vertices each collide, they are not always moved out of collision smoothly by the Minimum Translation Vector returned by the SAT algorithm. The polygon moved out of collision by the MTV does not rest against the other polygon as it should, it instead jumps back a small distance. I find this very strange as I have been unable to replicate this behaviour when resolving collisions between polygons of other vertex quantities and I cannot find the flaw in the implementation, though it must be there. What could be causing this incorrect collision resolution, which from my testing appears to only occur between polygons of three vertices?
      Any help you can provide on these issues would be greatly appreciated. Thank you.
    • By Rio Lloyd
      Hey all!
      we are a team of 3 looking for more members, 
      we are making an isometrical Survival RPG.
      we are looking For Members who can make low poly 3D artists who can do character models, environments, tools and more.
       
      if interested and want to know more email me at rioishere14@gmail.com
    • By nxrighthere
      BenchmarkNet is a console application for testing the reliable UDP networking solutions.
      Features:
      Asynchronous simulation of a large number of clients Stable under high loads Simple and flexible simulation setup Detailed session information Multi-process instances Supported networking libraries:
      ENet UNet LiteNetLib Lidgren MiniUDP Hazel Photon Neutrino DarkRift More information and source code on GitHub.
      You can find the latest benchmark results on the wiki page.
       
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

We are the game development community.

Whether you are an indie, hobbyist, AAA developer, or just trying to learn, GameDev.net is the place for you to learn, share, and connect with the games industry. Learn more About Us or sign up!

Sign me up!