OpenGL Drawing 3D "manually"...

This topic is 4929 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

Recommended Posts

Hi all I'm currently working on a project (along with a few others) to draw some 3D stuff, which will hopefully turn into a rendering engine eventually. I searched for a bit on these forums, and google with no luck. What i would like to do is draw 3D points on the 2D screen, with a depth buffer. I understand that the camera is a 4x4 matrix, along with the point, and i know all rotation matricies ant stuff like that. What is getting me is, given the projection (is it a matrix? in OGL it's gluPerspective(50,1,1,100) ) then how to I get the 2D point on the screen and how far away it is for Depth?? I've worked with OpenGL for a while now, with a little DirectX, and i think that will help me.. Thanks for anything (sorry if this topic has been brought up before) ~zix~ [Edited by - zix99 on November 22, 2004 3:05:15 PM]

Share on other sites
Yes, projection is a matrix. The DX SDK help files detail how the projection matrix is created.

What then occurs is: vertexposition (with an assumed w of 1...[x,y,z,1]) * world * view * projection.

The resulting vector is the divided by W. Now you're in clip space. In DX thats -1<x<1, -1<y<1, and 0<z<1. I think I've seen somewhere that in OpenGL z goes from -1 to 1 too... it's a full cube.

From here, you discard and/or clip the triangles to fit within those boundaries. You can also do this before dividing by W, where -w<x<w, -w<y<w, etc..

Then you apply viewport scaling. Basically scale and offset the x and y into pixel coordinates. For a 640x480 screen that would be x*320+320 and y*240+240. Then, rasterize your result.

Share on other sites
Any good tutorials that might show exaclty how to do this (I'll look into the DirectX SDK)?
Including drawing triangles/texturing triangles...

Thanks again
~zix~

Share on other sites
Yeah, look up the D3DXMatrixPerspectiveLH function in the DirectX SDK help file, it shows you exactly what the perspective matrix looks like.

It's this:

w       0       0               00       h       0               00       0       zf/(zf-zn)      10       0       -zn*zf/(zf-zn)  0where:h is the view space height. It is calculated from h = cot(fovY/2);w is the view space width. It is calculated from w = h * aspect   (where aspect = screenWidth/screenHeight)zf = farthest visible distance, zn = nearest visible distance

So, this works with homogenous coordinates. for a vertex:

  [x, y, z, 1]

you get the following: output vertex

  [x*w, y*h, (z-zn)*zf / (zf-zn), z]

which becomes (After the homogenous divide by w)

  [x*w/z, y*h/z, (1-zn/z)*zf / (zf-zn), 1]

In the case of D3D's matrices, you end up with x and y in the range [-1, 1] and z in the range [0, 1], 1 being farthest from the camera (the z-far plane) and 0 being nearest (z-near plane).

Hope that helps :)

Share on other sites
Drillan, thank you very much for that response, quite helpful. Now, sense I have one subject down, all that's left is drawing filled triangles (dont forget i'm using depth so if it is translated to 2D then drawn, i still need depth). Also texturing, but this can be covered later if needed.

One question for namethatnobodyelsetook
Quote:
 What then occurs is: vertexposition (with an assumed w of 1...[x,y,z,1]) * world * view * projection.

So, if I am correct it would look something like (if camera was at 0,0,0 and point was at 5,5,0):
1  0  0  5                 1  0  0  0    w  0  0  00  1  0  5   *  WORLD?  *  0  1  0  0  * 0  h  0  00  0  1  0                 0  0  1  0    0  0  zf/(zf-zn)  10  0  0  1                 0  0  0  1    0  0  -zn*zf/(zf-zn)  0

I figure rotating the camera is simply just multiplying the viewport coordinates by the rotation matrix?

Thanks again
~zix~

PS: I rated u guys up.. but it's not doing anything.. is the rating system broken??

Share on other sites
To draw a triangle, start by drawing the lines of the triangle. Look into Bresenham's line algorithm for details. When you draw the lines to the screen you only need to keep track of the smallest x value, and the greatest x value of the line.

So you could keep two array's of min x and max x.

MIN X MAX X
[0] [0]
[1] [1]
. .
. .
[480] [480]

The array would be the height of the screen, then just iterate through the array and connect the lines horizontally. In array position [0] you could have a value of 10, and array 2 position [0] you could have a value of 100, that means that left most outer edge of the traingle 0 pixels down on the screen is at 10, and the right most edge of the triangle 0 pixels down is at 100. A simple for loop from 10 to 100, filling in each pixel with an interpolated color or a sampled UV coord will give you a colored/textured triangle.

- Hope thats clear.

Share on other sites
Quote:
 Original post by zix99So, if I am correct it would look something like (if camera was at 0,0,0 and point was at 5,5,0):1 0 0 5 1 0 0 0 w 0 0 00 1 0 5 * WORLD? * 0 1 0 0 * 0 h 0 00 0 1 0 0 0 1 0 0 0 zf/(zf-zn) 10 0 0 1 0 0 0 1 0 0 -zn*zf/(zf-zn) 0I figure rotating the camera is simply just multiplying the viewport coordinates by the rotation matrix?

The correct order of operations is world*view*proj.

I don't understand what you mean by point was at 5,5,0 do you mean the look at point for the camera? I'm not sure what you mean but, for camera, every thing is inverted, because the world is transformed to move the camera back to 0,0,0. So if the camera was translated 5,5,0 forward the matrix would have -5,-5,0 in the translation portions.

Share on other sites
Maybe this is clearer?
(5,5,0)                    (0,0,0)Vertex Pos      World      Camera        Projection1  0  0  5                 1  0  0  0    w  0  0  00  1  0  5   *  WORLD?  *  0  1  0  0  * 0  h  0  00  0  1  0                 0  0  1  0    0  0  zf/(zf-zn)  10  0  0  1                 0  0  0  1    0  0  -zn*zf/(zf-zn)  0

According to namethatnooneelsetook it is
Quote:
 vertexposition (with an assumed w of 1...[x,y,z,1]) * world * view * projection.

And i'm a little confused on what the world matrix vs view matrix is. I'm guessing the view matrix is the same as the camera (inverted); in that case what is the world?

Thanks
~Zix

PS: Thanks for the triangle algo, once you have the 3 positions of the triangle, then you simple interpoliate the UV coordinates and draw accordingly (relativly simple).. correct? I'll have to do some thinking on this (along with the aspect of depth buffer), but i think i may have it.

Share on other sites
OpenGL doesn't necessarily have a world, you have a modelview matrix which is both world and view together (I could be wrong, I've never used OpenGL).

In DirectX the World matrix is the matrix that transforms a vertex to world space. ie: It positions and rotates a mesh.

The view matrix is the inverse of the camera's world matrix. If your camera was at 1,2,3, the inverse of that would be a translation matrix of -1,-2,-3. Instead of actually moving a camera through the world, the world is dragged (and rotated) to the camera.

So, lets say we have a vertex at the origin. Lets say our mesh is at 0,0,10. Lets say the camera is at 0,0,2.

vertex pos = 0,0,0
*worldmatrix = 0,0,10
*viewmatrix = 0,0,8
*projection = ...

Share on other sites
Thanks everyone.. I'll test all these ideas out and let you know how it goes.

I'll also rate you guys up as soon as it lets me.
EDIT: It just wont let me rate Drillan... is it because he's a GDNet member? o well, i guess i'll report to bugs

~zix~

• 12
• 9
• 13
• 41
• 15
• Similar Content

• By mmmax3d
Hi everyone,
I would need some assistance from anyone who has a similar experience
or a nice idea!
I have created a skybox (as cube) and now I need to add a floor/ground.
The skybox is created from cubemap and initially it was infinite.
Now it is finite with a specific size. The floor is a quad in the middle
of the skybox, like a horizon.
I have two problems:
When moving the skybox upwards or downwards, I need to
sample from points even above the horizon while sampling
from the botton at the same time.  I am trying to create a seamless blending of the texture
at the points of the horizon, when the quad is connected
to the skybox. However, I get skew effects. Does anybody has done sth similar?
Is there any good practice?
Thanks everyone!
• By mmmax3d
Hi everyone,
I would need some assistance from anyone who has a similar experience
or a nice idea!
I have created a skybox (as cube) and now I need to add a floor/ground.
The skybox is created from cubemap and initially it was infinite.
Now it is finite with a specific size. The floor is a quad in the middle
of the skybox, like a horizon.
I have two problems:
When moving the skybox upwards or downwards, I need to
sample from points even above the horizon while sampling
from the botton at the same time.  I am trying to create a seamless blending of the texture
at the points of the horizon, when the quad is connected
to the skybox. However, I get skew effects. Does anybody has done sth similar?
Is there any good practice?
Thanks everyone!

• I'm trying to implement PBR into my simple OpenGL renderer and trying to use multiple lighting passes, I'm using one pass per light for rendering as follow:
1- First pass = depth
2- Second pass = ambient
3- [3 .. n] for all the lights in the scene.
I'm using the blending function glBlendFunc(GL_ONE, GL_ONE) for passes [3..n], and i'm doing a Gamma Correction at the end of each fragment shader.
But i still have a problem with the output image it just looks noisy specially when i'm using texture maps.
Is there anything wrong with those steps or is there any improvement to this process?

• Hello Everyone!
I'm learning openGL, and currently i'm making a simple 2D game engine to test what I've learn so far.  In order to not say to much, i made a video in which i'm showing you the behavior of the rendering.
Video:

What i was expecting to happen, was the player moving around. When i render only the player, he moves as i would expect. When i add a second Sprite object, instead of the Player, this new sprite object is moving and finally if i add a third Sprite object the third one is moving. And the weird think is that i'm transforming the Vertices of the Player so why the transformation is being applied somewhere else?

Take a look at my code:
Sprite Class
(You mostly need to see the Constructor, the Render Method and the Move Method)
#include "Brain.h" #include <glm/gtc/matrix_transform.hpp> #include <vector> struct Sprite::Implementation { //Position. struct pos pos; //Tag. std::string tag; //Texture. Texture *texture; //Model matrix. glm::mat4 model; //Vertex Array Object. VertexArray *vao; //Vertex Buffer Object. VertexBuffer *vbo; //Layout. VertexBufferLayout *layout; //Index Buffer Object. IndexBuffer *ibo; //Shader. Shader *program; //Brains. std::vector<Brain *> brains; //Deconstructor. ~Implementation(); }; Sprite::Sprite(std::string image_path, std::string tag, float x, float y) { //Create Pointer To Implementaion. m_Impl = new Implementation(); //Set the Position of the Sprite object. m_Impl->pos.x = x; m_Impl->pos.y = y; //Set the tag. m_Impl->tag = tag; //Create The Texture. m_Impl->texture = new Texture(image_path); //Initialize the model Matrix. m_Impl->model = glm::mat4(1.0f); //Get the Width and the Height of the Texture. int width = m_Impl->texture->GetWidth(); int height = m_Impl->texture->GetHeight(); //Create the Verticies. float verticies[] = { //Positions //Texture Coordinates. x, y, 0.0f, 0.0f, x + width, y, 1.0f, 0.0f, x + width, y + height, 1.0f, 1.0f, x, y + height, 0.0f, 1.0f }; //Create the Indicies. unsigned int indicies[] = { 0, 1, 2, 2, 3, 0 }; //Create Vertex Array. m_Impl->vao = new VertexArray(); //Create the Vertex Buffer. m_Impl->vbo = new VertexBuffer((void *)verticies, sizeof(verticies)); //Create The Layout. m_Impl->layout = new VertexBufferLayout(); m_Impl->layout->PushFloat(2); m_Impl->layout->PushFloat(2); m_Impl->vao->AddBuffer(m_Impl->vbo, m_Impl->layout); //Create the Index Buffer. m_Impl->ibo = new IndexBuffer(indicies, 6); //Create the new shader. m_Impl->program = new Shader("Shaders/SpriteShader.shader"); } //Render. void Sprite::Render(Window * window) { //Create the projection Matrix based on the current window width and height. glm::mat4 proj = glm::ortho(0.0f, (float)window->GetWidth(), 0.0f, (float)window->GetHeight(), -1.0f, 1.0f); //Set the MVP Uniform. m_Impl->program->setUniformMat4f("u_MVP", proj * m_Impl->model); //Run All The Brains (Scripts) of this game object (sprite). for (unsigned int i = 0; i < m_Impl->brains.size(); i++) { //Get Current Brain. Brain *brain = m_Impl->brains[i]; //Call the start function only once! if (brain->GetStart()) { brain->SetStart(false); brain->Start(); } //Call the update function every frame. brain->Update(); } //Render. window->GetRenderer()->Draw(m_Impl->vao, m_Impl->ibo, m_Impl->texture, m_Impl->program); } void Sprite::Move(float speed, bool left, bool right, bool up, bool down) { if (left) { m_Impl->pos.x -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(-speed, 0, 0)); } if (right) { m_Impl->pos.x += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(speed, 0, 0)); } if (up) { m_Impl->pos.y += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, speed, 0)); } if (down) { m_Impl->pos.y -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, -speed, 0)); } } void Sprite::AddBrain(Brain * brain) { //Push back the brain object. m_Impl->brains.push_back(brain); } pos *Sprite::GetPos() { return &m_Impl->pos; } std::string Sprite::GetTag() { return m_Impl->tag; } int Sprite::GetWidth() { return m_Impl->texture->GetWidth(); } int Sprite::GetHeight() { return m_Impl->texture->GetHeight(); } Sprite::~Sprite() { delete m_Impl; } //Implementation Deconstructor. Sprite::Implementation::~Implementation() { delete texture; delete vao; delete vbo; delete layout; delete ibo; delete program; }
Renderer Class
#include "Renderer.h" #include "Error.h" Renderer::Renderer() { } Renderer::~Renderer() { } void Renderer::Draw(VertexArray * vao, IndexBuffer * ibo, Texture *texture, Shader * program) { vao->Bind(); ibo->Bind(); program->Bind(); if (texture != NULL) texture->Bind(); GLCall(glDrawElements(GL_TRIANGLES, ibo->GetCount(), GL_UNSIGNED_INT, NULL)); } void Renderer::Clear(float r, float g, float b) { GLCall(glClearColor(r, g, b, 1.0)); GLCall(glClear(GL_COLOR_BUFFER_BIT)); } void Renderer::Update(GLFWwindow *window) { /* Swap front and back buffers */ glfwSwapBuffers(window); /* Poll for and process events */ glfwPollEvents(); }
#shader vertex #version 330 core layout(location = 0) in vec4 aPos; layout(location = 1) in vec2 aTexCoord; out vec2 t_TexCoord; uniform mat4 u_MVP; void main() { gl_Position = u_MVP * aPos; t_TexCoord = aTexCoord; } #shader fragment #version 330 core out vec4 aColor; in vec2 t_TexCoord; uniform sampler2D u_Texture; void main() { aColor = texture(u_Texture, t_TexCoord); } Also i'm pretty sure that every time i'm hitting the up, down, left and right arrows on the keyboard, i'm changing the model Matrix of the Player and not the others.

Window Class:
#include "Window.h" #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Error.h" #include "Renderer.h" #include "Scene.h" #include "Input.h" //Global Variables. int screen_width, screen_height; //On Window Resize. void OnWindowResize(GLFWwindow *window, int width, int height); //Implementation Structure. struct Window::Implementation { //GLFW Window. GLFWwindow *GLFW_window; //Renderer. Renderer *renderer; //Delta Time. double delta_time; //Frames Per Second. int fps; //Scene. Scene *scnene; //Input. Input *input; //Deconstructor. ~Implementation(); }; //Window Constructor. Window::Window(std::string title, int width, int height) { //Initializing width and height. screen_width = width; screen_height = height; //Create Pointer To Implementation. m_Impl = new Implementation(); //Try initializing GLFW. if (!glfwInit()) { std::cout << "GLFW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); exit(-1); } //Setting up OpenGL Version 3.3 Core Profile. glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); /* Create a windowed mode window and its OpenGL context */ m_Impl->GLFW_window = glfwCreateWindow(width, height, title.c_str(), NULL, NULL); if (!m_Impl->GLFW_window) { std::cout << "GLFW could not create a window!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } /* Make the window's context current */ glfwMakeContextCurrent(m_Impl->GLFW_window); //Initialize GLEW. if(glewInit() != GLEW_OK) { std::cout << "GLEW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } //Enabling Blending. GLCall(glEnable(GL_BLEND)); GLCall(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); //Setting the ViewPort. GLCall(glViewport(0, 0, width, height)); //**********Initializing Implementation**********// m_Impl->renderer = new Renderer(); m_Impl->delta_time = 0.0; m_Impl->fps = 0; m_Impl->input = new Input(this); //**********Initializing Implementation**********// //Set Frame Buffer Size Callback. glfwSetFramebufferSizeCallback(m_Impl->GLFW_window, OnWindowResize); } //Window Deconstructor. Window::~Window() { delete m_Impl; } //Window Main Loop. void Window::MainLoop() { //Time Variables. double start_time = 0, end_time = 0, old_time = 0, total_time = 0; //Frames Counter. int frames = 0; /* Loop until the user closes the window */ while (!glfwWindowShouldClose(m_Impl->GLFW_window)) { old_time = start_time; //Total time of previous frame. start_time = glfwGetTime(); //Current frame start time. //Calculate the Delta Time. m_Impl->delta_time = start_time - old_time; //Get Frames Per Second. if (total_time >= 1) { m_Impl->fps = frames; total_time = 0; frames = 0; } //Clearing The Screen. m_Impl->renderer->Clear(0, 0, 0); //Render The Scene. if (m_Impl->scnene != NULL) m_Impl->scnene->Render(this); //Updating the Screen. m_Impl->renderer->Update(m_Impl->GLFW_window); //Increasing frames counter. frames++; //End Time. end_time = glfwGetTime(); //Total time after the frame completed. total_time += end_time - start_time; } //Terminate GLFW. glfwTerminate(); } //Load Scene. void Window::LoadScene(Scene * scene) { //Set the scene. m_Impl->scnene = scene; } //Get Delta Time. double Window::GetDeltaTime() { return m_Impl->delta_time; } //Get FPS. int Window::GetFPS() { return m_Impl->fps; } //Get Width. int Window::GetWidth() { return screen_width; } //Get Height. int Window::GetHeight() { return screen_height; } //Get Input. Input * Window::GetInput() { return m_Impl->input; } Renderer * Window::GetRenderer() { return m_Impl->renderer; } GLFWwindow * Window::GetGLFWindow() { return m_Impl->GLFW_window; } //Implementation Deconstructor. Window::Implementation::~Implementation() { delete renderer; delete input; } //OnWindowResize void OnWindowResize(GLFWwindow *window, int width, int height) { screen_width = width; screen_height = height; //Updating the ViewPort. GLCall(glViewport(0, 0, width, height)); }
Brain Class
#include "Brain.h" #include "Sprite.h" #include "Window.h" struct Brain::Implementation { //Just A Flag. bool started; //Window Pointer. Window *window; //Sprite Pointer. Sprite *sprite; }; Brain::Brain(Window *window, Sprite *sprite) { //Create Pointer To Implementation. m_Impl = new Implementation(); //Initialize Implementation. m_Impl->started = true; m_Impl->window = window; m_Impl->sprite = sprite; } Brain::~Brain() { //Delete Pointer To Implementation. delete m_Impl; } void Brain::Start() { } void Brain::Update() { } Window * Brain::GetWindow() { return m_Impl->window; } Sprite * Brain::GetSprite() { return m_Impl->sprite; } bool Brain::GetStart() { return m_Impl->started; } void Brain::SetStart(bool value) { m_Impl->started = value; } Script Class (Its a Brain Subclass!!!)
#include "Script.h" Script::Script(Window *window, Sprite *sprite) : Brain(window, sprite) { } Script::~Script() { } void Script::Start() { std::cout << "Game Started!" << std::endl; } void Script::Update() { Input *input = this->GetWindow()->GetInput(); Sprite *sp = this->GetSprite(); //Move this sprite. this->GetSprite()->Move(200 * this->GetWindow()->GetDeltaTime(), input->GetKeyDown("left"), input->GetKeyDown("right"), input->GetKeyDown("up"), input->GetKeyDown("down")); std::cout << sp->GetTag().c_str() << ".x = " << sp->GetPos()->x << ", " << sp->GetTag().c_str() << ".y = " << sp->GetPos()->y << std::endl; }
Main:
#include "SpaceShooterEngine.h" #include "Script.h" int main() { Window w("title", 600,600); Scene *scene = new Scene(); Sprite *player = new Sprite("Resources/Images/player.png", "Player", 100,100); Sprite *other = new Sprite("Resources/Images/cherno.png", "Other", 400, 100); Sprite *other2 = new Sprite("Resources/Images/cherno.png", "Other", 300, 400); Brain *brain = new Script(&w, player); player->AddBrain(brain); scene->AddSprite(player); scene->AddSprite(other); scene->AddSprite(other2); w.LoadScene(scene); w.MainLoop(); return 0; }

I literally can't find what is wrong. If you need more code, ask me to post it. I will also attach all the source files.
Brain.cpp
Error.cpp
IndexBuffer.cpp
Input.cpp
Renderer.cpp
Scene.cpp
Sprite.cpp
Texture.cpp
VertexArray.cpp
VertexBuffer.cpp
VertexBufferLayout.cpp
Window.cpp
Brain.h
Error.h
IndexBuffer.h
Input.h
Renderer.h
Scene.h
SpaceShooterEngine.h
Sprite.h
Texture.h
VertexArray.h
VertexBuffer.h
VertexBufferLayout.h
Window.h

• Hello fellow programmers,
For a couple of days now i've decided to build my own planet renderer just to see how floating point precision issues
can be tackled. As you probably imagine, i've quickly faced FPP issues when trying to render absurdly large planets.

I have used the classical quadtree LOD approach;
I've generated my grids with 33 vertices, (x: -1 to 1, y: -1 to 1, z = 0).
Each grid is managed by a TerrainNode class that, depending on the side it represents (top, bottom, left right, front, back),
creates a special rotation-translation matrix that moves and rotates the grid away from the origin so that when i finally
normalize all the vertices on my vertex shader i can get a perfect sphere.
T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, 1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(180.0), glm::dvec3(1.0, 0.0, 0.0)); sides[0] = new TerrainNode(1.0, radius, T * R, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_FRONT)); T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, -1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(0.0), glm::dvec3(1.0, 0.0, 0.0)); sides[1] = new TerrainNode(1.0, radius, R * T, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_BACK)); // So on and so forth for the rest of the sides As you can see, for the front side grid, i rotate it 180 degrees to make it face the camera and push it towards the eye;
the back side is handled almost the same way only that i don't need to rotate it but simply push it away from the eye.
The same technique is applied for the rest of the faces (obviously, with the proper rotations / translations).
The matrix that result from the multiplication of R and T (in that particular order) is send to my vertex shader as r_Grid'.
// spherify vec3 V = normalize((r_Grid * vec4(r_Vertex, 1.0)).xyz); gl_Position = r_ModelViewProjection * vec4(V, 1.0); The r_ModelViewProjection' matrix is generated on the CPU in this manner.
// No the most efficient way, but it works. glm::dmat4 Camera::getMatrix() { // Create the view matrix // Roll, Yaw and Pitch are all quaternions. glm::dmat4 View = glm::toMat4(Roll) * glm::toMat4(Pitch) * glm::toMat4(Yaw); // The model matrix is generated by translating in the oposite direction of the camera. glm::dmat4 Model = glm::translate(glm::dmat4(1.0), -Position); // Projection = glm::perspective(fovY, aspect, zNear, zFar); // zNear = 0.1, zFar = 1.0995116e12 return Projection * View * Model; } I managed to get rid of z-fighting by using a technique called Logarithmic Depth Buffer described in this article; it works amazingly well, no z-fighting at all, at least not visible.
Each frame i'm rendering each node by sending the generated matrices this way.
// set the r_ModelViewProjection uniform // Sneak in the mRadiusMatrix which is a matrix that contains the radius of my planet. Shader::setUniform(0, Camera::getInstance()->getMatrix() * mRadiusMatrix); // set the r_Grid matrix uniform i created earlier. Shader::setUniform(1, r_Grid); grid->render(); My planet's radius is around 6400000.0 units, absurdly large, but that's what i really want to achieve;
Everything works well, the node's split and merge as you'd expect, however whenever i get close to the surface
of the planet the rounding errors start to kick in giving me that lovely stairs effect.
I've read that if i could render each grid relative to the camera i could get better precision on the surface, effectively
getting rid of those rounding errors.

My question is how can i achieve this relative to camera rendering in my scenario here?
I know that i have to do most of the work on the CPU with double, and that's exactly what i'm doing.
I only use double on the CPU side where i also do most of the matrix multiplications.
As you can see from my vertex shader i only do the usual r_ModelViewProjection * (some vertex coords).