• 14
• 12
• 9
• 10
• 13
• ### Similar Content

• By elect
Hi,
ok, so, we are having problems with our current mirror reflection implementation.
At the moment we are doing it very simple, so for the i-th frame, we calculate the reflection vectors given the viewPoint and some predefined points on the mirror surface (position and normal).
Then, using the least squared algorithm, we find the point that has the minimum distance from all these reflections vectors. This is going to be our virtual viewPoint (with the right orientation).
After that, we render offscreen to a texture by setting the OpenGL camera on the virtual viewPoint.
And finally we use the rendered texture on the mirror surface.
So far this has always been fine, but now we are having some more strong constraints on accuracy.
What are our best options given that:
- we have a dynamic scene, the mirror and parts of the scene can change continuously from frame to frame
- we have about 3k points (with normals) per mirror, calculated offline using some cad program (such as Catia)
- all the mirror are always perfectly spherical (with different radius vertically and horizontally) and they are always convex
- a scene can have up to 10 mirror
- it should be fast enough also for vr (Htc Vive) on fastest gpus (only desktops)

Looking around, some papers talk about calculating some caustic surface derivation offline, but I don't know if this suits my case
Also, another paper, used some acceleration structures to detect the intersection between the reflection vectors and the scene, and then adjust the corresponding texture coordinate. This looks the most accurate but also very heavy from a computational point of view.

Other than that, I couldn't find anything updated/exhaustive around, can you help me?

• Hello all,
I am currently working on a game engine for use with my game development that I would like to be as flexible as possible.  As such the exact requirements for how things should work can't be nailed down to a specific implementation and I am looking for, at least now, a default good average case scenario design.
Here is what I have implemented:
Deferred rendering using OpenGL Arbitrary number of lights and shadow mapping Each rendered object, as defined by a set of geometry, textures, animation data, and a model matrix is rendered with its own draw call Skeletal animations implemented on the GPU.   Model matrix transformation implemented on the GPU Frustum and octree culling for optimization Here are my questions and concerns:
Doing the skeletal animation on the GPU, currently, requires doing the skinning for each object multiple times per frame: once for the initial geometry rendering and once for the shadow map rendering for each light for which it is not culled.  This seems very inefficient.  Is there a way to do skeletal animation on the GPU only once across these render calls? Without doing the model matrix transformation on the CPU, I fail to see how I can easily batch objects with the same textures and shaders in a single draw call without passing a ton of matrix data to the GPU (an array of model matrices then an index for each vertex into that array for transformation purposes?) If I do the matrix transformations on the CPU, It seems I can't really do the skinning on the GPU as the pre-transformed vertexes will wreck havoc with the calculations, so this seems not viable unless I am missing something Overall it seems like simplest solution is to just do all of the vertex manipulation on the CPU and pass the pre-transformed data to the GPU, using vertex shaders that do basically nothing.  This doesn't seem the most efficient use of the graphics hardware, but could potentially reduce the number of draw calls needed.

Really, I am looking for some advice on how to proceed with this, how something like this is typically handled.  Are the multiple draw calls and skinning calculations not a huge deal?  I would LIKE to save as much of the CPU's time per frame so it can be tasked with other things, as to keep CPU resources open to the implementation of the engine.  However, that becomes a moot point if the GPU becomes a bottleneck.

• Hello!
I would like to introduce Diligent Engine, a project that I've been recently working on. Diligent Engine is a light-weight cross-platform abstraction layer between the application and the platform-specific graphics API. Its main goal is to take advantages of the next-generation APIs such as Direct3D12 and Vulkan, but at the same time provide support for older platforms via Direct3D11, OpenGL and OpenGLES. Diligent Engine exposes common front-end for all supported platforms and provides interoperability with underlying native API. Shader source code converter allows shaders authored in HLSL to be translated to GLSL and used on all platforms. Diligent Engine supports integration with Unity and is designed to be used as a graphics subsystem in a standalone game engine, Unity native plugin or any other 3D application. It is distributed under Apache 2.0 license and is free to use. Full source code is available for download on GitHub.
Features:
True cross-platform Exact same client code for all supported platforms and rendering backends No #if defined(_WIN32) ... #elif defined(LINUX) ... #elif defined(ANDROID) ... No #if defined(D3D11) ... #elif defined(D3D12) ... #elif defined(OPENGL) ... Exact same HLSL shaders run on all platforms and all backends Modular design Components are clearly separated logically and physically and can be used as needed Only take what you need for your project (do not want to keep samples and tutorials in your codebase? Simply remove Samples submodule. Only need core functionality? Use only Core submodule) No 15000 lines-of-code files Clear object-based interface No global states Key graphics features: Automatic shader resource binding designed to leverage the next-generation rendering APIs Multithreaded command buffer generation 50,000 draw calls at 300 fps with D3D12 backend Descriptor, memory and resource state management Modern c++ features to make code fast and reliable The following platforms and low-level APIs are currently supported:
Windows Desktop: Direct3D11, Direct3D12, OpenGL Universal Windows: Direct3D11, Direct3D12 Linux: OpenGL Android: OpenGLES MacOS: OpenGL iOS: OpenGLES API Basics
Initialization
The engine can perform initialization of the API or attach to already existing D3D11/D3D12 device or OpenGL/GLES context. For instance, the following code shows how the engine can be initialized in D3D12 mode:
#include "RenderDeviceFactoryD3D12.h" using namespace Diligent; // ...  GetEngineFactoryD3D12Type GetEngineFactoryD3D12 = nullptr; // Load the dll and import GetEngineFactoryD3D12() function LoadGraphicsEngineD3D12(GetEngineFactoryD3D12); auto *pFactoryD3D11 = GetEngineFactoryD3D12(); EngineD3D12Attribs EngD3D12Attribs; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[0] = 1024; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[1] = 32; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[2] = 16; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[3] = 16; EngD3D12Attribs.NumCommandsToFlushCmdList = 64; RefCntAutoPtr<IRenderDevice> pRenderDevice; RefCntAutoPtr<IDeviceContext> pImmediateContext; SwapChainDesc SwapChainDesc; RefCntAutoPtr<ISwapChain> pSwapChain; pFactoryD3D11->CreateDeviceAndContextsD3D12( EngD3D12Attribs, &pRenderDevice, &pImmediateContext, 0 ); pFactoryD3D11->CreateSwapChainD3D12( pRenderDevice, pImmediateContext, SwapChainDesc, hWnd, &pSwapChain ); Creating Resources
Device resources are created by the render device. The two main resource types are buffers, which represent linear memory, and textures, which use memory layouts optimized for fast filtering. To create a buffer, you need to populate BufferDesc structure and call IRenderDevice::CreateBuffer(). The following code creates a uniform (constant) buffer:
BufferDesc BuffDesc; BufferDesc.Name = "Uniform buffer"; BuffDesc.BindFlags = BIND_UNIFORM_BUFFER; BuffDesc.Usage = USAGE_DYNAMIC; BuffDesc.uiSizeInBytes = sizeof(ShaderConstants); BuffDesc.CPUAccessFlags = CPU_ACCESS_WRITE; m_pDevice->CreateBuffer( BuffDesc, BufferData(), &m_pConstantBuffer ); Similar, to create a texture, populate TextureDesc structure and call IRenderDevice::CreateTexture() as in the following example:
TextureDesc TexDesc; TexDesc.Name = "My texture 2D"; TexDesc.Type = TEXTURE_TYPE_2D; TexDesc.Width = 1024; TexDesc.Height = 1024; TexDesc.Format = TEX_FORMAT_RGBA8_UNORM; TexDesc.Usage = USAGE_DEFAULT; TexDesc.BindFlags = BIND_SHADER_RESOURCE | BIND_RENDER_TARGET | BIND_UNORDERED_ACCESS; TexDesc.Name = "Sample 2D Texture"; m_pRenderDevice->CreateTexture( TexDesc, TextureData(), &m_pTestTex ); Initializing Pipeline State
Diligent Engine follows Direct3D12 style to configure the graphics/compute pipeline. One big Pipelines State Object (PSO) encompasses all required states (all shader stages, input layout description, depth stencil, rasterizer and blend state descriptions etc.)
To create a shader, populate ShaderCreationAttribs structure. An important member is ShaderCreationAttribs::SourceLanguage. The following are valid values for this member:
SHADER_SOURCE_LANGUAGE_DEFAULT  - The shader source format matches the underlying graphics API: HLSL for D3D11 or D3D12 mode, and GLSL for OpenGL and OpenGLES modes. SHADER_SOURCE_LANGUAGE_HLSL  - The shader source is in HLSL. For OpenGL and OpenGLES modes, the source code will be converted to GLSL. See shader converter for details. SHADER_SOURCE_LANGUAGE_GLSL  - The shader source is in GLSL. There is currently no GLSL to HLSL converter. To allow grouping of resources based on the frequency of expected change, Diligent Engine introduces classification of shader variables:
Static variables (SHADER_VARIABLE_TYPE_STATIC) are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. Mutable variables (SHADER_VARIABLE_TYPE_MUTABLE) define resources that are expected to change on a per-material frequency. Examples may include diffuse textures, normal maps etc. Dynamic variables (SHADER_VARIABLE_TYPE_DYNAMIC) are expected to change frequently and randomly. This post describes the resource binding model in Diligent Engine.
The following is an example of shader initialization:
To create a pipeline state object, define instance of PipelineStateDesc structure. The structure defines the pipeline specifics such as if the pipeline is a compute pipeline, number and format of render targets as well as depth-stencil format:
// This is a graphics pipeline PSODesc.IsComputePipeline = false; PSODesc.GraphicsPipeline.NumRenderTargets = 1; PSODesc.GraphicsPipeline.RTVFormats[0] = TEX_FORMAT_RGBA8_UNORM_SRGB; PSODesc.GraphicsPipeline.DSVFormat = TEX_FORMAT_D32_FLOAT; The structure also defines depth-stencil, rasterizer, blend state, input layout and other parameters. For instance, rasterizer state can be defined as in the code snippet below:
// Init rasterizer state RasterizerStateDesc &RasterizerDesc = PSODesc.GraphicsPipeline.RasterizerDesc; RasterizerDesc.FillMode = FILL_MODE_SOLID; RasterizerDesc.CullMode = CULL_MODE_NONE; RasterizerDesc.FrontCounterClockwise = True; RasterizerDesc.ScissorEnable = True; //RSDesc.MultisampleEnable = false; // do not allow msaa (fonts would be degraded) RasterizerDesc.AntialiasedLineEnable = False; When all fields are populated, call IRenderDevice::CreatePipelineState() to create the PSO:
Shader resource binding in Diligent Engine is based on grouping variables in 3 different groups (static, mutable and dynamic). Static variables are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. They are bound directly to the shader object:

m_pPSO->CreateShaderResourceBinding(&m_pSRB); Dynamic and mutable resources are then bound through SRB object:
m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "tex2DDiffuse")->Set(pDiffuseTexSRV); m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "cbRandomAttribs")->Set(pRandomAttrsCB); The difference between mutable and dynamic resources is that mutable ones can only be set once for every instance of a shader resource binding. Dynamic resources can be set multiple times. It is important to properly set the variable type as this may affect performance. Static variables are generally most efficient, followed by mutable. Dynamic variables are most expensive from performance point of view. This post explains shader resource binding in more details.
Setting the Pipeline State and Invoking Draw Command
Before any draw command can be invoked, all required vertex and index buffers as well as the pipeline state should be bound to the device context:
// Clear render target const float zero[4] = {0, 0, 0, 0}; m_pContext->ClearRenderTarget(nullptr, zero); // Set vertex and index buffers IBuffer *buffer[] = {m_pVertexBuffer}; Uint32 offsets[] = {0}; Uint32 strides[] = {sizeof(MyVertex)}; m_pContext->SetVertexBuffers(0, 1, buffer, strides, offsets, SET_VERTEX_BUFFERS_FLAG_RESET); m_pContext->SetIndexBuffer(m_pIndexBuffer, 0); m_pContext->SetPipelineState(m_pPSO); Also, all shader resources must be committed to the device context:
m_pContext->CommitShaderResources(m_pSRB, COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES); When all required states and resources are bound, IDeviceContext::Draw() can be used to execute draw command or IDeviceContext::DispatchCompute() can be used to execute compute command. Note that for a draw command, graphics pipeline must be bound, and for dispatch command, compute pipeline must be bound. Draw() takes DrawAttribs structure as an argument. The structure members define all attributes required to perform the command (primitive topology, number of vertices or indices, if draw call is indexed or not, if draw call is instanced or not, if draw call is indirect or not, etc.). For example:
DrawAttribs attrs; attrs.IsIndexed = true; attrs.IndexType = VT_UINT16; attrs.NumIndices = 36; attrs.Topology = PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; pContext->Draw(attrs); Tutorials and Samples
The GitHub repository contains a number of tutorials and sample applications that demonstrate the API usage.

AntTweakBar sample demonstrates how to use AntTweakBar library to create simple user interface.

Atmospheric scattering sample is a more advanced example. It demonstrates how Diligent Engine can be used to implement various rendering tasks: loading textures from files, using complex shaders, rendering to textures, using compute shaders and unordered access views, etc.

The repository includes Asteroids performance benchmark based on this demo developed by Intel. It renders 50,000 unique textured asteroids and lets compare performance of D3D11 and D3D12 implementations. Every asteroid is a combination of one of 1000 unique meshes and one of 10 unique textures.

Integration with Unity
Diligent Engine supports integration with Unity through Unity low-level native plugin interface. The engine relies on Native API Interoperability to attach to the graphics API initialized by Unity. After Diligent Engine device and context are created, they can be used us usual to create resources and issue rendering commands. GhostCubePlugin shows an example how Diligent Engine can be used to render a ghost cube only visible as a reflection in a mirror.

• By Yxjmir
I'm trying to load data from a .gltf file into a struct to use to load a .bin file. I don't think there is a problem with how the vertex positions are loaded, but with the indices. This is what I get when drawing with glDrawArrays(GL_LINES, ...):

Also, using glDrawElements gives a similar result. Since it looks like its drawing triangles using the wrong vertices for each face, I'm assuming it needs an index buffer/element buffer. (I'm not sure why there is a line going through part of it, it doesn't look like it belongs to a side, re-exported it without texture coordinates checked, and its not there)
I'm using jsoncpp to load the GLTF file, its format is based on JSON. Here is the gltf struct I'm using, and how I parse the file:
glBindVertexArray(g_pGame->m_VAO);
glDrawElements(GL_LINES, g_pGame->m_indices.size(), GL_UNSIGNED_BYTE, (void*)0); // Only shows with GL_UNSIGNED_BYTE
glDrawArrays(GL_LINES, 0, g_pGame->m_vertexCount);
So, I'm asking what type should I use for the indices? it doesn't seem to be unsigned short, which is what I selected with the Khronos Group Exporter for blender. Also, am I reading part or all of the .bin file wrong?
Test.gltf
Test.bin

• That means how do I use base DirectX or OpenGL api's to make a physics based destruction simulation?
Will it be just smart rendering or something else is required?

# OpenGL Problem with texturing

This topic is 4676 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

## Recommended Posts

##### Share on other sites
Hi,
Try to use this tag next time ,if you don't mind :)
[*source]code[*/source]
remove *.

you forget to enable GL_TEXTURE_2D just put glEnable(GL_TEXTURE_2D); somewhere in your code.
bye

##### Share on other sites
If you do this whole point of glDrawElements is lost. Just do it once.

glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[0]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[3]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[6]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[9]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[12]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[15]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[18]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[21]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[24]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[27]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[30]);glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, &Indices[33]);

Do it once only

glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, &Indices[0]);

For now you can put glEnable(GL_TEXTURE_2D) in you initGL code.

##### Share on other sites
Now it's working but texture is display only at one wall of box.

##### Share on other sites
Quote:
 Original post by ArcziNow it's working but texture is display only at one wall of box.

Thats probably because here you have info only for 1 triangle/quad

static GLfloat TexCoordData[] = {0.000000f, 0.000000f, 0.000000f, 1.00000f, 1.00000f, 0.000000f,1.00000f, 1.00000f};

The number of texture coordinates should be equal to number of vertices. So if you have 24 vertices, you need 24 texture coordinates. Currently this looks like a cube so make a copy of the same data. Generally vertices have 3 values - x, y, z so they have total number of values = 72 while texture coordinates are generally have only s, t values so they would be 48 values in total in the array ie if you have 24 vertices. Same goes for normals -> they have 3 values, x, y, z so they also will have to be 72 values ie if you want to use glDrawElements but if you use immediate mode then what you have should probably suffice.

##### Share on other sites
Holly molly check the length of that code, dude seriously!!!
Next time, please use the source tags to encapsulate your code layout.
Thank you
PS: You can check the FAQ to get to know how to use the said tag.

##### Share on other sites
Hallo again
I,ve seriously problem to put texture on the Box so I exported *.3ds to c++ in another aplication and I've the same problem like in the topic: how to add texture to the box ?

It's realy important to me because I've 4 days to exam so if you could help me, please.

My texture name is limesto1.bmp
#include <windows.h>#include <GL\gl.h>#include <GL\glu.h>struct sample_MATERIAL{ GLfloat ambient[3]; GLfloat diffuse[3]; GLfloat specular[3]; GLfloat emission[3]; GLfloat alpha; GLfloat phExp; int   texture;};static sample_MATERIAL materials [1] = { {{0.117647f,0.117647f,0.117647f},	{0.752941f,0.752941f,0.752941f},	{0.752941f,0.752941f,0.752941f},	{0.0f,0.0f,0.0f},	1.0f,8.0f,-1} //Explorer Default};// 8 Verticies// 4 Texture Coordinates// 6 Normals// 12 Trianglesstatic BYTE face_indicies[12][9] = {// Object #-1	{0,2,3 ,0,0,0 ,0,1,2 }, {3,1,0 ,0,0,0 ,2,3,0 }, {4,5,7 ,1,1,1 ,3,0,1 },	{7,6,4 ,1,1,1 ,1,2,3 }, {0,1,5 ,2,2,2 ,3,0,1 }, {5,4,0 ,2,2,2 ,1,2,3 },	{1,3,7 ,3,3,3 ,3,0,1 }, {7,5,1 ,3,3,3 ,1,2,3 }, {3,2,6 ,4,4,4 ,3,0,1 },	{6,7,3 ,4,4,4 ,1,2,3 }, {2,0,4 ,5,5,5 ,3,0,1 }, {4,6,2 ,5,5,5 ,1,2,3 }};static GLfloat vertices [8][3] = {{-0.5f,0.256356f,-0.430085f},{0.5f,0.256356f,-0.430085f},{-0.5f,0.256356f,0.430085f},{0.5f,0.256356f,0.430085f},{-0.5f,-0.256356f,-0.430085f},{0.5f,-0.256356f,-0.430085f},{-0.5f,-0.256356f,0.430085f},{0.5f,-0.256356f,0.430085f}};static GLfloat normals [6][3] = {{0.0f,1.0f,4.37114e-008f},{0.0f,-1.0f,-4.94219e-008f},{0.0f,8.29145e-008f,-1.0f},{1.0f,0.0f,0.0f},{0.0f,-8.29145e-008f,1.0f},{-1.0f,0.0f,0.0f}};static GLfloat textures [4][2] = {{1.0f,0.0f},{1.0f,1.0f},{0.0f,1.0f},{0.0f,0.0f}};/*Material indicies*//*{material index,face count}*/static int material_ref [1][2] = {{0,12}};void MyMaterial(GLenum mode,GLfloat *f,GLfloat alpha){ GLfloat d[4]; d[0]=f[0]; d[1]=f[1]; d[2]=f[2]; d[3]=alpha; glMaterialfv (GL_FRONT_AND_BACK,mode,d);}/* *  SelectMaterial uses OpenGL commands to define facet colors. * *  Returns: *    Nothing */void SelectMaterial(int i){  //  // Define the reflective properties of the 3D Object faces.  //  glEnd();  GLfloat alpha=materials.alpha;  MyMaterial (GL_AMBIENT, materials.ambient,alpha);  MyMaterial (GL_DIFFUSE, materials.diffuse,alpha);  MyMaterial (GL_SPECULAR, materials.specular,alpha);  MyMaterial (GL_EMISSION, materials.emission,alpha);  glMaterialf (GL_FRONT_AND_BACK,GL_SHININESS,materials.phExp);  glBegin(GL_TRIANGLES);};GLint Gen3DObjectList(){ int i; int j; GLint lid=glGenLists(1);	int mcount=0;	int mindex=0;   glNewList(lid, GL_COMPILE);    glBegin (GL_TRIANGLES);      for(i=0;i<sizeof(face_indicies)/sizeof(face_indicies[0]);i++)       {      if(!mcount)       {        SelectMaterial(material_ref[mindex][0]);        mcount=material_ref[mindex][1];        mindex++;       }       mcount--;       for(j=0;j<3;j++)        {          int vi=face_indicies[j];          int ni=face_indicies[j+3];//Normal index          int ti=face_indicies[j+6];//Texture index           glNormal3f (normals[ni][0],normals[ni][1],normals[ni][2]);           glTexCoord2f(textures[ti][0],textures[ti][1]);           glVertex3f (vertices[vi][0],vertices[vi][1],vertices[vi][2]);        }       }    glEnd ();   glEndList();   return lid;};float sizex,sizey;LONG WINAPI WndProc (HWND, UINT, WPARAM, LPARAM);GLsizei glnWidth, glnHeight;GLdouble gldAspect;void SetDCPixelFormat (HWND,HDC);void InitializeRC (void);void DrawScene (HDC, UINT,UINT);HPALETTE hPalette = NULL;GLfloat nSize = 0.0f;GLfloat nCol = 0.0f;GLfloat nTop = 1.0f;GLfloat nBottom = 0.0f;int bFlag = 1;char wndname[256]="";GLint hlist=0;int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,                    LPSTR lpszCmdLine, int nCmdShow){    static char szAppName[] = "3D Exploration Open GL test application";    WNDCLASS wc;    HWND hwnd;    MSG msg;    wc.style = CS_HREDRAW | CS_VREDRAW;    wc.lpfnWndProc = (WNDPROC) WndProc;    wc.cbClsExtra = 0;    wc.cbWndExtra = 0;    wc.hInstance = hInstance;    wc.hIcon = LoadIcon (NULL, IDI_APPLICATION);    wc.hCursor = LoadCursor (NULL, IDC_ARROW);    wc.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);    wc.lpszMenuName = NULL;    wc.lpszClassName = szAppName;    RegisterClass (&wc);    hwnd = CreateWindow (szAppName, szAppName,        WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,        CW_USEDEFAULT, CW_USEDEFAULT, 200, 200,        HWND_DESKTOP, NULL, hInstance, NULL);    hlist=Gen3DObjectList();    ShowWindow (hwnd, nCmdShow);    UpdateWindow (hwnd);    while (GetMessage (&msg, NULL, 0, 0)) {        TranslateMessage (&msg);        DispatchMessage (&msg);    }    return msg.wParam;}/* *  WndProc processes messages to the main window. */LONG WINAPI WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam){    static HDC hdc;    static HGLRC hrc;    PAINTSTRUCT ps;    static UINT nAngle = 0;    static UINT nAngle2 = 0;    static UINT nTimer;    int n;                    switch (msg) {        case WM_CREATE:        //        // Create a rendering context and set a timer.        //        hdc = GetDC (hwnd);        SetDCPixelFormat (hwnd,hdc);        hrc = wglCreateContext (hdc);        wglMakeCurrent (hdc, hrc);        InitializeRC ();        nTimer = SetTimer (hwnd, 1, 1, NULL);        return 0;    case WM_SIZE:        //        // Redefine the viewing volume and viewport when the window size        // changes.        //        glnWidth = (GLsizei) LOWORD (lParam);        glnHeight = (GLsizei) HIWORD (lParam);        return 0;    case WM_PAINT:{        //        // Draw the scene.        //        BeginPaint (hwnd, &ps);        DrawScene (hdc, nAngle,nAngle2);        EndPaint (hwnd, &ps);        }return 0;    case WM_TIMER:        //        // Update the rotation angle and force a repaint.        //        nAngle += 2;        if (nAngle >= 360)            nAngle -= 360;        nAngle2 += 1;        if (nAngle2 >= 360)            nAngle2 -= 360;		if (bFlag == 1)			nSize += 0.05f;			nCol += 0.01f;			if (nSize >= nTop)				bFlag = 0;		if (bFlag == 0)			nSize -= 0.05f;			nCol -= 0.01f;			if (nSize <= nBottom)				bFlag = 1;		InvalidateRect (hwnd, NULL, FALSE);        return 0;    case WM_QUERYNEWPALETTE:        //        // If the program is using a color palette, realize the palette        // and update the client area when the window receives the input        // focus.        //        if (hPalette != NULL) {            if (n = RealizePalette (hdc))                InvalidateRect (hwnd, NULL, FALSE);            return n;        }        break;    case WM_PALETTECHANGED:        //        // If the program is using a color palette, realize the palette        // and update the colors in the client area when another program        // realizes its palette.        //        if ((hPalette != NULL) && ((HWND) wParam != hwnd)) {            if (RealizePalette (hdc))                UpdateColors (hdc);            return 0;        }        break;    case WM_DESTROY:        //        // Clean up and terminate.        //        wglMakeCurrent (NULL, NULL);        wglDeleteContext (hrc);        ReleaseDC (hwnd, hdc);        if (hPalette != NULL)            DeleteObject (hPalette);        KillTimer (hwnd, nTimer);        PostQuitMessage (0);        return 0;    }    return DefWindowProc (hwnd, msg, wParam, lParam);}/* *  SetDCPixelFormat sets the pixel format for a device context in *  preparation for creating a rendering context. * *  Input parameters: *    hdc = Device context handle * *  Returns: *    Nothing */void SetDCPixelFormat (HWND hwnd,HDC hdc){    HANDLE hHeap;    int nColors, i;    LPLOGPALETTE lpPalette;    BYTE byRedMask, byGreenMask, byBlueMask;    static PIXELFORMATDESCRIPTOR pfd = {        sizeof (PIXELFORMATDESCRIPTOR),             // Size of this structure        1,                                          // Version number        PFD_DRAW_TO_WINDOW |                        // Flags        PFD_SUPPORT_OPENGL |        PFD_GENERIC_ACCELERATED|        PFD_DOUBLEBUFFER,        PFD_TYPE_RGBA,                              // RGBA pixel values        24,                                         // 24-bit color        0, 0, 0, 0, 0, 0,                           // Don't care about these        0, 0,                                       // No alpha buffer        0, 0, 0, 0, 0,                              // No accumulation buffer        32,                                         // 32-bit depth buffer        0,                                          // No stencil buffer        0,                                          // No auxiliary buffers        PFD_MAIN_PLANE,                             // Layer type        0,                                          // Reserved (must be 0)        0, 0, 0                                     // No layer masks    };    int nPixelFormat;    nPixelFormat = ChoosePixelFormat (hdc, &pfd);    SetPixelFormat (hdc, nPixelFormat, &pfd);    if (pfd.dwFlags & PFD_NEED_PALETTE) {        nColors = 1 << pfd.cColorBits;        hHeap = GetProcessHeap ();        (LPLOGPALETTE) lpPalette = (LPLOGPALETTE)HeapAlloc (hHeap, 0,            sizeof (LOGPALETTE) + (nColors * sizeof (PALETTEENTRY)));        lpPalette->palVersion = 0x300;        lpPalette->palNumEntries = nColors;        byRedMask = (1 << pfd.cRedBits) - 1;        byGreenMask = (1 << pfd.cGreenBits) - 1;        byBlueMask = (1 << pfd.cBlueBits) - 1;        for (i=0; i<nColors; i++) {            lpPalette->palPalEntry.peRed =                (((i >> pfd.cRedShift) & byRedMask) * 255) / byRedMask;            lpPalette->palPalEntry.peGreen =                (((i >> pfd.cGreenShift) & byGreenMask) * 255) / byGreenMask;            lpPalette->palPalEntry.peBlue =                (((i >> pfd.cBlueShift) & byBlueMask) * 255) / byBlueMask;            lpPalette->palPalEntry.peFlags = 0;        }        hPalette = CreatePalette (lpPalette);        HeapFree (hHeap, 0, lpPalette);        if (hPalette != NULL) {            SelectPalette (hdc, hPalette, FALSE);            RealizePalette (hdc);        }    }}/* *  InitializeRC initializes the current rendering context. * *  Input parameters: *    None * *  Returns: *    Nothing */void InitializeRC (void){    GLfloat glfLightAmbient[] = { 0.1f, 0.1f, 0.1f, 1.0f };    GLfloat glfLightDiffuse[] = { 1.2f, 1.2f, 1.2f, 1.0f };    GLfloat glfLightSpecular[] = { 0.9f, 0.9f, 0.9f, 1.0f };    //    // Add a light to the scene.    //    glLightfv (GL_LIGHT0, GL_AMBIENT, glfLightAmbient);    glLightfv (GL_LIGHT0, GL_DIFFUSE, glfLightDiffuse);    glLightfv (GL_LIGHT0, GL_SPECULAR, glfLightSpecular);    glEnable (GL_LIGHTING);    glEnable (GL_LIGHT0);    //    // Enable depth testing and backface culling.    //    glEnable (GL_DEPTH_TEST);        glDisable (GL_CULL_FACE);    glLightModeli(GL_LIGHT_MODEL_TWO_SIDE ,1);}/* *  DrawScene uses OpenGL Display list to draw a object. * *  Input parameters: *    hdc = Device context handle *    nAngle = Angle of rotation for object * *  Returns: *    Nothing */void DrawScene (HDC hdc, UINT nAngle,UINT nAngle2){        sizex=glnWidth;        sizey=glnHeight;        gldAspect = (GLdouble) glnWidth / (GLdouble) glnHeight;        glMatrixMode (GL_PROJECTION);        glLoadIdentity ();        gluPerspective (30.0,           // Field-of-view angle                        gldAspect,      // Aspect ratio of viewing volume                        1.0,            // Distance to near clipping plane                        10.0);          // Distance to far clipping plane        glViewport (0, 0, glnWidth, glnHeight);    //    // Clear the color and depth buffers.    //    glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);    //    // Define the modelview transformation.    //    glMatrixMode (GL_MODELVIEW);    glLoadIdentity ();    glTranslatef (0.0f, 0.0f, -8.0f);    glRotatef (30.0f, 1.0f, 0.0f, 0.0f);    glRotatef ((GLfloat) nAngle, 0.0f, 1.0f, 0.0f);    glRotatef ((GLfloat) nAngle2, 1.0f, 0.0f, 0.0f);    glScalef (nSize+2.5f,nSize+2.5f,nSize+2.5f);  	int mcount=0;	int mindex=0;	    glCallList(hlist);    //    // Swap the buffers.    //    glFlush();    SwapBuffers (hdc);};

##### Share on other sites
Nobody know's how to correct my code?

##### Share on other sites
Hi,
#include <stdio.h>#include <windows.h> #include <gl\gl.h> #include <gl\glu.h> #include <gl\glaux.h> struct sample_MATERIAL{ GLfloat ambient[3]; GLfloat diffuse[3]; GLfloat specular[3]; GLfloat emission[3]; GLfloat alpha; GLfloat phExp; int   texture;};GLuint texture[1];int LoadGLTextures();static sample_MATERIAL materials [1] = { {{0.117647f,0.117647f,0.117647f},	{0.752941f,0.752941f,0.752941f},	{0.752941f,0.752941f,0.752941f},	{0.0f,0.0f,0.0f},	1.0f,8.0f,-1} //Explorer Default};// 8 Verticies// 4 Texture Coordinates// 6 Normals// 12 TrianglesAUX_RGBImageRec *LoadBMP(char *Filename) {FILE *File=NULL; if (!Filename) {return NULL; }File=fopen(Filename,"r"); if (File) {fclose(File); return auxDIBImageLoad(Filename); }return NULL; }static BYTE face_indicies[12][9] = {// Object #-1	{0,2,3 ,0,0,0 ,0,1,2 }, {3,1,0 ,0,0,0 ,2,3,0 }, {4,5,7 ,1,1,1 ,3,0,1 },	{7,6,4 ,1,1,1 ,1,2,3 }, {0,1,5 ,2,2,2 ,3,0,1 }, {5,4,0 ,2,2,2 ,1,2,3 },	{1,3,7 ,3,3,3 ,3,0,1 }, {7,5,1 ,3,3,3 ,1,2,3 }, {3,2,6 ,4,4,4 ,3,0,1 },	{6,7,3 ,4,4,4 ,1,2,3 }, {2,0,4 ,5,5,5 ,3,0,1 }, {4,6,2 ,5,5,5 ,1,2,3 }};static GLfloat vertices [8][3] = {{-0.5f,0.256356f,-0.430085f},{0.5f,0.256356f,-0.430085f},{-0.5f,0.256356f,0.430085f},{0.5f,0.256356f,0.430085f},{-0.5f,-0.256356f,-0.430085f},{0.5f,-0.256356f,-0.430085f},{-0.5f,-0.256356f,0.430085f},{0.5f,-0.256356f,0.430085f}};static GLfloat normals [6][3] = {{0.0f,1.0f,4.37114e-008f},{0.0f,-1.0f,-4.94219e-008f},{0.0f,8.29145e-008f,-1.0f},{1.0f,0.0f,0.0f},{0.0f,-8.29145e-008f,1.0f},{-1.0f,0.0f,0.0f}};static GLfloat textures [4][2] = {{1.0f,0.0f},{1.0f,1.0f},{0.0f,1.0f},{0.0f,0.0f}};/*Material indicies*//*{material index,face count}*/static int material_ref [1][2] = {{0,12}};void MyMaterial(GLenum mode,GLfloat *f,GLfloat alpha){ GLfloat d[4]; d[0]=f[0]; d[1]=f[1]; d[2]=f[2]; d[3]=alpha; glMaterialfv (GL_FRONT_AND_BACK,mode,d);}/* *  SelectMaterial uses OpenGL commands to define facet colors. * *  Returns: *    Nothing */void SelectMaterial(int i){  //  // Define the reflective properties of the 3D Object faces.  //  glEnd();  GLfloat alpha=materials.alpha;  MyMaterial (GL_AMBIENT, materials.ambient,alpha);  MyMaterial (GL_DIFFUSE, materials.diffuse,alpha);  MyMaterial (GL_SPECULAR, materials.specular,alpha);  MyMaterial (GL_EMISSION, materials.emission,alpha);  glMaterialf (GL_FRONT_AND_BACK,GL_SHININESS,materials.phExp);  glBegin(GL_TRIANGLES);};GLint Gen3DObjectList(){ int i; int j; GLint lid=glGenLists(1);	int mcount=0;	int mindex=0;   glNewList(lid, GL_COMPILE);    glBegin (GL_TRIANGLES);      for(i=0;i<sizeof(face_indicies)/sizeof(face_indicies[0]);i++)       {      if(!mcount)       {        SelectMaterial(material_ref[mindex][0]);        mcount=material_ref[mindex][1];        mindex++;       }       mcount--;       for(j=0;j<3;j++)        {          int vi=face_indicies[j];          int ni=face_indicies[j+3];//Normal index          int ti=face_indicies[j+6];//Texture index           glNormal3f (normals[ni][0],normals[ni][1],normals[ni][2]);           glTexCoord2f(textures[ti][0],textures[ti][1]);           glVertex3f (vertices[vi][0],vertices[vi][1],vertices[vi][2]);        }       }    glEnd ();   glEndList();   return lid;};float sizex,sizey;LONG WINAPI WndProc (HWND, UINT, WPARAM, LPARAM);GLsizei glnWidth, glnHeight;GLdouble gldAspect;void SetDCPixelFormat (HWND,HDC);void InitializeRC (void);void DrawScene (HDC, UINT,UINT);HPALETTE hPalette = NULL;GLfloat nSize = 0.0f;GLfloat nCol = 0.0f;GLfloat nTop = 1.0f;GLfloat nBottom = 0.0f;int bFlag = 1;char wndname[256]="";GLint hlist=0;int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,                    LPSTR lpszCmdLine, int nCmdShow){    static char szAppName[] = "3D Exploration Open GL test application";    WNDCLASS wc;    HWND hwnd;    MSG msg;    wc.style = CS_HREDRAW | CS_VREDRAW;    wc.lpfnWndProc = (WNDPROC) WndProc;    wc.cbClsExtra = 0;    wc.cbWndExtra = 0;    wc.hInstance = hInstance;    wc.hIcon = LoadIcon (NULL, IDI_APPLICATION);    wc.hCursor = LoadCursor (NULL, IDC_ARROW);    wc.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);    wc.lpszMenuName = NULL;    wc.lpszClassName = szAppName;    RegisterClass (&wc);    hwnd = CreateWindow (szAppName, szAppName,        WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,        CW_USEDEFAULT, CW_USEDEFAULT, 200, 200,        HWND_DESKTOP, NULL, hInstance, NULL);    hlist=Gen3DObjectList();    ShowWindow (hwnd, nCmdShow);    UpdateWindow (hwnd);    while (GetMessage (&msg, NULL, 0, 0)) {        TranslateMessage (&msg);        DispatchMessage (&msg);    }    return msg.wParam;}/* *  WndProc processes messages to the main window. */LONG WINAPI WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam){    static HDC hdc;    static HGLRC hrc;    PAINTSTRUCT ps;    static UINT nAngle = 0;    static UINT nAngle2 = 0;    static UINT nTimer;    int n;                    switch (msg) {        case WM_CREATE:        //        // Create a rendering context and set a timer.        //        hdc = GetDC (hwnd);        SetDCPixelFormat (hwnd,hdc);        hrc = wglCreateContext (hdc);        wglMakeCurrent (hdc, hrc);        InitializeRC ();        nTimer = SetTimer (hwnd, 1, 1, NULL);        return 0;    case WM_SIZE:        //        // Redefine the viewing volume and viewport when the window size        // changes.        //        glnWidth = (GLsizei) LOWORD (lParam);        glnHeight = (GLsizei) HIWORD (lParam);        return 0;    case WM_PAINT:{        //        // Draw the scene.        //        BeginPaint (hwnd, &ps);        DrawScene (hdc, nAngle,nAngle2);        EndPaint (hwnd, &ps);        }return 0;    case WM_TIMER:        //        // Update the rotation angle and force a repaint.        //        nAngle += 2;        if (nAngle >= 360)            nAngle -= 360;        nAngle2 += 1;        if (nAngle2 >= 360)            nAngle2 -= 360;		if (bFlag == 1)			nSize += 0.05f;			nCol += 0.01f;			if (nSize >= nTop)				bFlag = 0;		if (bFlag == 0)			nSize -= 0.05f;			nCol -= 0.01f;			if (nSize <= nBottom)				bFlag = 1;		InvalidateRect (hwnd, NULL, FALSE);        return 0;    case WM_QUERYNEWPALETTE:        //        // If the program is using a color palette, realize the palette        // and update the client area when the window receives the input        // focus.        //        if (hPalette != NULL) {            if (n = RealizePalette (hdc))                InvalidateRect (hwnd, NULL, FALSE);            return n;        }        break;    case WM_PALETTECHANGED:        //        // If the program is using a color palette, realize the palette        // and update the colors in the client area when another program        // realizes its palette.        //        if ((hPalette != NULL) && ((HWND) wParam != hwnd)) {            if (RealizePalette (hdc))                UpdateColors (hdc);            return 0;        }        break;    case WM_DESTROY:        //        // Clean up and terminate.        //        wglMakeCurrent (NULL, NULL);        wglDeleteContext (hrc);        ReleaseDC (hwnd, hdc);        if (hPalette != NULL)            DeleteObject (hPalette);        KillTimer (hwnd, nTimer);        PostQuitMessage (0);        return 0;    }    return DefWindowProc (hwnd, msg, wParam, lParam);}/* *  SetDCPixelFormat sets the pixel format for a device context in *  preparation for creating a rendering context. * *  Input parameters: *    hdc = Device context handle * *  Returns: *    Nothing */void SetDCPixelFormat (HWND hwnd,HDC hdc){    HANDLE hHeap;    int nColors, i;    LPLOGPALETTE lpPalette;    BYTE byRedMask, byGreenMask, byBlueMask;    static PIXELFORMATDESCRIPTOR pfd = {        sizeof (PIXELFORMATDESCRIPTOR),             // Size of this structure        1,                                          // Version number        PFD_DRAW_TO_WINDOW |                        // Flags        PFD_SUPPORT_OPENGL |        PFD_GENERIC_ACCELERATED|        PFD_DOUBLEBUFFER,        PFD_TYPE_RGBA,                              // RGBA pixel values        24,                                         // 24-bit color        0, 0, 0, 0, 0, 0,                           // Don't care about these        0, 0,                                       // No alpha buffer        0, 0, 0, 0, 0,                              // No accumulation buffer        32,                                         // 32-bit depth buffer        0,                                          // No stencil buffer        0,                                          // No auxiliary buffers        PFD_MAIN_PLANE,                             // Layer type        0,                                          // Reserved (must be 0)        0, 0, 0                                     // No layer masks    };    int nPixelFormat;    nPixelFormat = ChoosePixelFormat (hdc, &pfd);    SetPixelFormat (hdc, nPixelFormat, &pfd);    if (pfd.dwFlags & PFD_NEED_PALETTE) {        nColors = 1 << pfd.cColorBits;        hHeap = GetProcessHeap ();        (LPLOGPALETTE) lpPalette = (LPLOGPALETTE)HeapAlloc (hHeap, 0,            sizeof (LOGPALETTE) + (nColors * sizeof (PALETTEENTRY)));        lpPalette->palVersion = 0x300;        lpPalette->palNumEntries = nColors;        byRedMask = (1 << pfd.cRedBits) - 1;        byGreenMask = (1 << pfd.cGreenBits) - 1;        byBlueMask = (1 << pfd.cBlueBits) - 1;        for (i=0; i<nColors; i++) {            lpPalette->palPalEntry.peRed =                (((i >> pfd.cRedShift) & byRedMask) * 255) / byRedMask;            lpPalette->palPalEntry.peGreen =                (((i >> pfd.cGreenShift) & byGreenMask) * 255) / byGreenMask;            lpPalette->palPalEntry.peBlue =                (((i >> pfd.cBlueShift) & byBlueMask) * 255) / byBlueMask;            lpPalette->palPalEntry.peFlags = 0;        }        hPalette = CreatePalette (lpPalette);        HeapFree (hHeap, 0, lpPalette);        if (hPalette != NULL) {            SelectPalette (hdc, hPalette, FALSE);            RealizePalette (hdc);        }    }}/* *  InitializeRC initializes the current rendering context. * *  Input parameters: *    None * *  Returns: *    Nothing */void InitializeRC (void){    GLfloat glfLightAmbient[] = { 0.1f, 0.1f, 0.1f, 1.0f };    GLfloat glfLightDiffuse[] = { 1.2f, 1.2f, 1.2f, 1.0f };    GLfloat glfLightSpecular[] = { 0.9f, 0.9f, 0.9f, 1.0f };	glEnable(GL_TEXTURE_2D);	LoadGLTextures();    //    // Add a light to the scene.    //        glLightfv (GL_LIGHT0, GL_AMBIENT, glfLightAmbient);    glLightfv (GL_LIGHT0, GL_DIFFUSE, glfLightDiffuse);    glLightfv (GL_LIGHT0, GL_SPECULAR, glfLightSpecular);    glEnable (GL_LIGHTING);    glEnable (GL_LIGHT0);    //    // Enable depth testing and backface culling.    //    glEnable (GL_DEPTH_TEST);        glDisable (GL_CULL_FACE);    glLightModeli(GL_LIGHT_MODEL_TWO_SIDE ,1);}/* *  DrawScene uses OpenGL Display list to draw a object. * *  Input parameters: *    hdc = Device context handle *    nAngle = Angle of rotation for object * *  Returns: *    Nothing */int LoadGLTextures() {int Status=FALSE; AUX_RGBImageRec *TextureImage[1]; memset(TextureImage,0,sizeof(void *)*1); if (TextureImage[0]=LoadBMP("Limesto1.bmp")){Status=TRUE; glGenTextures(1, &texture[0]); glBindTexture(GL_TEXTURE_2D, texture[0]);glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[0]->sizeX, TextureImage[0]->sizeY, 0, GL_RGB, GL_UNSIGNED_BYTE, TextureImage[0]->data);glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);}if (TextureImage[0]) {if (TextureImage[0]->data) {free(TextureImage[0]->data); }free(TextureImage[0]); }return Status; }void DrawScene (HDC hdc, UINT nAngle,UINT nAngle2){        sizex=glnWidth;        sizey=glnHeight;        gldAspect = (GLdouble) glnWidth / (GLdouble) glnHeight;        glMatrixMode (GL_PROJECTION);        glLoadIdentity ();        gluPerspective (30.0,           // Field-of-view angle                        gldAspect,      // Aspect ratio of viewing volume                        1.0,            // Distance to near clipping plane                        10.0);          // Distance to far clipping plane        glViewport (0, 0, glnWidth, glnHeight);    //    // Clear the color and depth buffers.    //    glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);    //    // Define the modelview transformation.    //    glMatrixMode (GL_MODELVIEW);    glLoadIdentity ();    glTranslatef (0.0f, 0.0f, -8.0f);    glRotatef (30.0f, 1.0f, 0.0f, 0.0f);    glRotatef ((GLfloat) nAngle, 0.0f, 1.0f, 0.0f);    glRotatef ((GLfloat) nAngle2, 1.0f, 0.0f, 0.0f);    glScalef (nSize+2.5f,nSize+2.5f,nSize+2.5f);  	int mcount=0;	int mindex=0;	    glCallList(hlist);    //    // Swap the buffers.    //    glFlush();    SwapBuffers (hdc);};

Have a fun! :)
Rate me if you don't mind :P

[Edited by - ff8 on June 3, 2005 4:32:08 PM]