Sign in to follow this  
cozman

OpenGL Bitmap fonts & bitmap font generators (SOLVED)

Recommended Posts

It's come time for me to revamp my font engine in OpenGL for an upcoming project. I am currently using bitmapped fonts but I really hate them. After a good day or so of screwing with FTGL and a few other half-baked libraries I think I've settled on bitmap fonts again unfortunately. (If I'm missing some great new font library someone please clue me in [smile]) Anyway, I realized that since I switched to Linux, one of the things I haven't done is generate a bitmap font. What cross-platform (preferably, but I'll take linux-only) bitmap font generators are there. The only decent one I had is Windows only, and while I could possibly get it running under Cedega, I'd really like to have a native solution. EDIT: I ended up writing my own solution, feel free to check it out. [Edited by - cozman on July 1, 2005 1:37:13 PM]

Share this post


Link to post
Share on other sites
take a look at TXF fonts for mip-mapped bitmap texture fonts... the page even includes a utility for converting .bdf fonts to .txf fonts. And, since you're running Linux, you probably already have a lot of .bdf fonts on your system.

The code is all straight C and even makes room for older implementations of OpenGL (it only assumes OpenGL v1.0 but uses texture objects if they're in the library you compile with). The code is really understandable and I found it easy to convert to C++ and my own (extended) file format. TXF is my top suggestion. (Even though I don't think his coloring extensions are really that useful (I removed them in my implementation) -- but they're a good example of how you can extend the font library). Oh, and you could also change the rasterization step so that it doesn't do an availability lookup for each character *every_time* the text is drawn.

There is also SDL_ttf (if you want to distribute .ttf fonts with your game, but then you're limited to using copyright-free fonts) and PLib has its own font rendering (but I think it's based off of TXF, anyway). I agree that bitmap fonts are probably a better solution than rasterized fonts, and almost certainly a better solution than 3D (polygonal) fonts... (depends on what you're using the font for). In the end it might be best to just write your own, tailored to how you will be using it.

HTH

Share this post


Link to post
Share on other sites
I've recently completed porting my utility, glFont (http://students.cs.byu.edu/~bfish/glfont.php), to wxWidgets, and it is now fully cross-platform. I'm actually open sourcing it very soon. If you're interested, however, I can get you an early copy :-). Just drop me a line at brad.fish@gmail.com.

Share this post


Link to post
Share on other sites
personally I plan on pulling something together using Freetype 2 (raw, not using a wrappin lib, I did look at some of them but they looked.. insane.. ).

I admit, it took me a couple of days to get things going, but it did give wonderful output (properly positions and kerned text just like Windows makes.. hmmm lovely [wink]), although i need todo some more work on the caching side of things as my solution is a tad.. suboptimial.. to say the least [grin]

Basically, the hardest bit of using FT2 raw is that you have to manage the finer glyth details yourself, however once the stuff is in memory one glsubtex upload later and you have some nice, antialised, fonts.

Example output from my Multi-thread game loop test, and I waffle abit about it in my journal on here.

Share this post


Link to post
Share on other sites
thanks for the great replies guys,

One thing that I want from my font system is for it to be usable by people other than me, so I want the fonts to be relatively easy to create. Truetype fonts are the most common, and the nicest since they can be scaled, etc.

I'd looked into txf earlier and of the three options txf is the most obscure and

glFont looks really good, I stumbled upon it earlier in my searches but like the rest noticed it didn't run under Linux, if this post didn't turn up something similar, I was planning on writing something similar in wxPython. I sent you an email, I'd love to give it a try.

something custom using Freetype 2 was my ideal plan, but for the time being isn't practical since I don't have a ton of time to spend on the font system. (Also, as for the wrapper libs being 'insane' I'd have to agree, I'd like to see/make an effort to design a simpler approach to using TTF fonts in OpenGL)

edit: Just saw your post sergeant_x, and I concur although in the future I'd recommend using the Private Message system to let me know you're a fan (to those not in the know he was referencing my avatar)

Share this post


Link to post
Share on other sites
Thanks for sending that strtok, if I end up going with bitmapped fonts it will almost certainly be due to glfont.

I came upon what seems to be a not-so-insane FreeType wrapper library that for some reason wasn't coming up in my earlier searches. OGLFT seems like it might be worth checking out.

Share this post


Link to post
Share on other sites
Guest Anonymous Poster
AngelCode's bitmap generator is an awesome piece of software, if you have not yet seen it. The bitmap fonts generated come with a description file, which when used correctly, allows you to draw characters with varying sizes making it look more natural.

Share this post


Link to post
Share on other sites
I found a guy who wrote his own font generator using FreeType that was extremely simple fonttool. I decided to adapt this to cut out the middle step, which resulted in an extremely simple but somewhat useful class. I've released my work as GLFT_Font.

It's extremely easy to use:

#include "GLFT_Font.h"

...
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
...
Font fnt("somefont.ttf", size);
...
fnt.drawText(x, y, "Hello World");


It's open source and BSD-licensed, any improvements/bug-fixes/suggestions would be greatly appreciated. I think it's about time that there is a simple method for rendering TTF files under OpenGL.

(By the way, it's just as fast at rendering as bitmap fonts. Essentially all this does is generate then load a bitmap font.)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Forum Statistics

    • Total Topics
      628278
    • Total Posts
      2981785
  • Similar Content

    • By mellinoe
      Hi all,
      First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource!
      Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots:
      The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios.
      Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
    • By aejt
      I recently started getting into graphics programming (2nd try, first try was many years ago) and I'm working on a 3d rendering engine which I hope to be able to make a 3D game with sooner or later. I have plenty of C++ experience, but not a lot when it comes to graphics, and while it's definitely going much better this time, I'm having trouble figuring out how assets are usually handled by engines.
      I'm not having trouble with handling the GPU resources, but more so with how the resources should be defined and used in the system (materials, models, etc).
      This is my plan now, I've implemented most of it except for the XML parts and factories and those are the ones I'm not sure of at all:
      I have these classes:
      For GPU resources:
      Geometry: holds and manages everything needed to render a geometry: VAO, VBO, EBO. Texture: holds and manages a texture which is loaded into the GPU. Shader: holds and manages a shader which is loaded into the GPU. For assets relying on GPU resources:
      Material: holds a shader resource, multiple texture resources, as well as uniform settings. Mesh: holds a geometry and a material. Model: holds multiple meshes, possibly in a tree structure to more easily support skinning later on? For handling GPU resources:
      ResourceCache<T>: T can be any resource loaded into the GPU. It owns these resources and only hands out handles to them on request (currently string identifiers are used when requesting handles, but all resources are stored in a vector and each handle only contains resource's index in that vector) Resource<T>: The handles given out from ResourceCache. The handles are reference counted and to get the underlying resource you simply deference like with pointers (*handle).  
      And my plan is to define everything into these XML documents to abstract away files:
      Resources.xml for ref-counted GPU resources (geometry, shaders, textures) Resources are assigned names/ids and resource files, and possibly some attributes (what vertex attributes does this geometry have? what vertex attributes does this shader expect? what uniforms does this shader use? and so on) Are reference counted using ResourceCache<T> Assets.xml for assets using the GPU resources (materials, meshes, models) Assets are not reference counted, but they hold handles to ref-counted resources. References the resources defined in Resources.xml by names/ids. The XMLs are loaded into some structure in memory which is then used for loading the resources/assets using factory classes:
      Factory classes for resources:
      For example, a texture factory could contain the texture definitions from the XML containing data about textures in the game, as well as a cache containing all loaded textures. This means it has mappings from each name/id to a file and when asked to load a texture with a name/id, it can look up its path and use a "BinaryLoader" to either load the file and create the resource directly, or asynchronously load the file's data into a queue which then can be read from later to create the resources synchronously in the GL context. These factories only return handles.
      Factory classes for assets:
      Much like for resources, these classes contain the definitions for the assets they can load. For example, with the definition the MaterialFactory will know which shader, textures and possibly uniform a certain material has, and with the help of TextureFactory and ShaderFactory, it can retrieve handles to the resources it needs (Shader + Textures), setup itself from XML data (uniform values), and return a created instance of requested material. These factories return actual instances, not handles (but the instances contain handles).
       
       
      Is this a good or commonly used approach? Is this going to bite me in the ass later on? Are there other more preferable approaches? Is this outside of the scope of a 3d renderer and should be on the engine side? I'd love to receive and kind of advice or suggestions!
      Thanks!
    • By nedondev
      I 'm learning how to create game by using opengl with c/c++ coding, so here is my fist game. In video description also have game contain in Dropbox. May be I will make it better in future.
      Thanks.
    • By Abecederia
      So I've recently started learning some GLSL and now I'm toying with a POM shader. I'm trying to optimize it and notice that it starts having issues at high texture sizes, especially with self-shadowing.
      Now I know POM is expensive either way, but would pulling the heightmap out of the normalmap alpha channel and in it's own 8bit texture make doing all those dozens of texture fetches more cheap? Or is everything in the cache aligned to 32bit anyway? I haven't implemented texture compression yet, I think that would help? But regardless, should there be a performance boost from decoupling the heightmap? I could also keep it in a lower resolution than the normalmap if that would improve performance.
      Any help is much appreciated, please keep in mind I'm somewhat of a newbie. Thanks!
    • By test opty
      Hi,
      I'm trying to learn OpenGL through a website and have proceeded until this page of it. The output is a simple triangle. The problem is the complexity.
      I have read that page several times and tried to analyse the code but I haven't understood the code properly and completely yet. This is the code:
       
      #include <glad/glad.h> #include <GLFW/glfw3.h> #include <C:\Users\Abbasi\Desktop\std_lib_facilities_4.h> using namespace std; //****************************************************************************** void framebuffer_size_callback(GLFWwindow* window, int width, int height); void processInput(GLFWwindow *window); // settings const unsigned int SCR_WIDTH = 800; const unsigned int SCR_HEIGHT = 600; const char *vertexShaderSource = "#version 330 core\n" "layout (location = 0) in vec3 aPos;\n" "void main()\n" "{\n" " gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n" "}\0"; const char *fragmentShaderSource = "#version 330 core\n" "out vec4 FragColor;\n" "void main()\n" "{\n" " FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n" "}\n\0"; //******************************* int main() { // glfw: initialize and configure // ------------------------------ glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // glfw window creation GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "My First Triangle", nullptr, nullptr); if (window == nullptr) { cout << "Failed to create GLFW window" << endl; glfwTerminate(); return -1; } glfwMakeContextCurrent(window); glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); // glad: load all OpenGL function pointers if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { cout << "Failed to initialize GLAD" << endl; return -1; } // build and compile our shader program // vertex shader int vertexShader = glCreateShader(GL_VERTEX_SHADER); glShaderSource(vertexShader, 1, &vertexShaderSource, nullptr); glCompileShader(vertexShader); // check for shader compile errors int success; char infoLog[512]; glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(vertexShader, 512, nullptr, infoLog); cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << endl; } // fragment shader int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(fragmentShader, 1, &fragmentShaderSource, nullptr); glCompileShader(fragmentShader); // check for shader compile errors glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(fragmentShader, 512, nullptr, infoLog); cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << endl; } // link shaders int shaderProgram = glCreateProgram(); glAttachShader(shaderProgram, vertexShader); glAttachShader(shaderProgram, fragmentShader); glLinkProgram(shaderProgram); // check for linking errors glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success); if (!success) { glGetProgramInfoLog(shaderProgram, 512, nullptr, infoLog); cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << endl; } glDeleteShader(vertexShader); glDeleteShader(fragmentShader); // set up vertex data (and buffer(s)) and configure vertex attributes float vertices[] = { -0.5f, -0.5f, 0.0f, // left 0.5f, -0.5f, 0.0f, // right 0.0f, 0.5f, 0.0f // top }; unsigned int VBO, VAO; glGenVertexArrays(1, &VAO); glGenBuffers(1, &VBO); // bind the Vertex Array Object first, then bind and set vertex buffer(s), //and then configure vertex attributes(s). glBindVertexArray(VAO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0); glEnableVertexAttribArray(0); // note that this is allowed, the call to glVertexAttribPointer registered VBO // as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind glBindBuffer(GL_ARRAY_BUFFER, 0); // You can unbind the VAO afterwards so other VAO calls won't accidentally // modify this VAO, but this rarely happens. Modifying other // VAOs requires a call to glBindVertexArray anyways so we generally don't unbind // VAOs (nor VBOs) when it's not directly necessary. glBindVertexArray(0); // uncomment this call to draw in wireframe polygons. //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // render loop while (!glfwWindowShouldClose(window)) { // input // ----- processInput(window); // render // ------ glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); // draw our first triangle glUseProgram(shaderProgram); glBindVertexArray(VAO); // seeing as we only have a single VAO there's no need to // bind it every time, but we'll do so to keep things a bit more organized glDrawArrays(GL_TRIANGLES, 0, 3); // glBindVertexArray(0); // no need to unbind it every time // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) glfwSwapBuffers(window); glfwPollEvents(); } // optional: de-allocate all resources once they've outlived their purpose: glDeleteVertexArrays(1, &VAO); glDeleteBuffers(1, &VBO); // glfw: terminate, clearing all previously allocated GLFW resources. glfwTerminate(); return 0; } //************************************************** // process all input: query GLFW whether relevant keys are pressed/released // this frame and react accordingly void processInput(GLFWwindow *window) { if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) glfwSetWindowShouldClose(window, true); } //******************************************************************** // glfw: whenever the window size changed (by OS or user resize) this callback function executes void framebuffer_size_callback(GLFWwindow* window, int width, int height) { // make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays. glViewport(0, 0, width, height); } As you see, about 200 lines of complicated code only for a simple triangle. 
      I don't know what parts are necessary for that output. And also, what the correct order of instructions for such an output or programs is, generally. That start point is too complex for a beginner of OpenGL like me and I don't know how to make the issue solved. What are your ideas please? What is the way to figure both the code and the whole program out correctly please?
      I wish I'd read a reference that would teach me OpenGL through a step-by-step method. 
  • Popular Now