• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By elect
      ok, so, we are having problems with our current mirror reflection implementation.
      At the moment we are doing it very simple, so for the i-th frame, we calculate the reflection vectors given the viewPoint and some predefined points on the mirror surface (position and normal).
      Then, using the least squared algorithm, we find the point that has the minimum distance from all these reflections vectors. This is going to be our virtual viewPoint (with the right orientation).
      After that, we render offscreen to a texture by setting the OpenGL camera on the virtual viewPoint.
      And finally we use the rendered texture on the mirror surface.
      So far this has always been fine, but now we are having some more strong constraints on accuracy.
      What are our best options given that:
      - we have a dynamic scene, the mirror and parts of the scene can change continuously from frame to frame
      - we have about 3k points (with normals) per mirror, calculated offline using some cad program (such as Catia)
      - all the mirror are always perfectly spherical (with different radius vertically and horizontally) and they are always convex
      - a scene can have up to 10 mirror
      - it should be fast enough also for vr (Htc Vive) on fastest gpus (only desktops)

      Looking around, some papers talk about calculating some caustic surface derivation offline, but I don't know if this suits my case
      Also, another paper, used some acceleration structures to detect the intersection between the reflection vectors and the scene, and then adjust the corresponding texture coordinate. This looks the most accurate but also very heavy from a computational point of view.

      Other than that, I couldn't find anything updated/exhaustive around, can you help me?
      Thanks in advance
    • By kanageddaamen
      Hello all,
      I am currently working on a game engine for use with my game development that I would like to be as flexible as possible.  As such the exact requirements for how things should work can't be nailed down to a specific implementation and I am looking for, at least now, a default good average case scenario design.
      Here is what I have implemented:
      Deferred rendering using OpenGL Arbitrary number of lights and shadow mapping Each rendered object, as defined by a set of geometry, textures, animation data, and a model matrix is rendered with its own draw call Skeletal animations implemented on the GPU.   Model matrix transformation implemented on the GPU Frustum and octree culling for optimization Here are my questions and concerns:
      Doing the skeletal animation on the GPU, currently, requires doing the skinning for each object multiple times per frame: once for the initial geometry rendering and once for the shadow map rendering for each light for which it is not culled.  This seems very inefficient.  Is there a way to do skeletal animation on the GPU only once across these render calls? Without doing the model matrix transformation on the CPU, I fail to see how I can easily batch objects with the same textures and shaders in a single draw call without passing a ton of matrix data to the GPU (an array of model matrices then an index for each vertex into that array for transformation purposes?) If I do the matrix transformations on the CPU, It seems I can't really do the skinning on the GPU as the pre-transformed vertexes will wreck havoc with the calculations, so this seems not viable unless I am missing something Overall it seems like simplest solution is to just do all of the vertex manipulation on the CPU and pass the pre-transformed data to the GPU, using vertex shaders that do basically nothing.  This doesn't seem the most efficient use of the graphics hardware, but could potentially reduce the number of draw calls needed.

      Really, I am looking for some advice on how to proceed with this, how something like this is typically handled.  Are the multiple draw calls and skinning calculations not a huge deal?  I would LIKE to save as much of the CPU's time per frame so it can be tasked with other things, as to keep CPU resources open to the implementation of the engine.  However, that becomes a moot point if the GPU becomes a bottleneck.
    • By DiligentDev
      I would like to introduce Diligent Engine, a project that I've been recently working on. Diligent Engine is a light-weight cross-platform abstraction layer between the application and the platform-specific graphics API. Its main goal is to take advantages of the next-generation APIs such as Direct3D12 and Vulkan, but at the same time provide support for older platforms via Direct3D11, OpenGL and OpenGLES. Diligent Engine exposes common front-end for all supported platforms and provides interoperability with underlying native API. Shader source code converter allows shaders authored in HLSL to be translated to GLSL and used on all platforms. Diligent Engine supports integration with Unity and is designed to be used as a graphics subsystem in a standalone game engine, Unity native plugin or any other 3D application. It is distributed under Apache 2.0 license and is free to use. Full source code is available for download on GitHub.
      True cross-platform Exact same client code for all supported platforms and rendering backends No #if defined(_WIN32) ... #elif defined(LINUX) ... #elif defined(ANDROID) ... No #if defined(D3D11) ... #elif defined(D3D12) ... #elif defined(OPENGL) ... Exact same HLSL shaders run on all platforms and all backends Modular design Components are clearly separated logically and physically and can be used as needed Only take what you need for your project (do not want to keep samples and tutorials in your codebase? Simply remove Samples submodule. Only need core functionality? Use only Core submodule) No 15000 lines-of-code files Clear object-based interface No global states Key graphics features: Automatic shader resource binding designed to leverage the next-generation rendering APIs Multithreaded command buffer generation 50,000 draw calls at 300 fps with D3D12 backend Descriptor, memory and resource state management Modern c++ features to make code fast and reliable The following platforms and low-level APIs are currently supported:
      Windows Desktop: Direct3D11, Direct3D12, OpenGL Universal Windows: Direct3D11, Direct3D12 Linux: OpenGL Android: OpenGLES MacOS: OpenGL iOS: OpenGLES API Basics
      The engine can perform initialization of the API or attach to already existing D3D11/D3D12 device or OpenGL/GLES context. For instance, the following code shows how the engine can be initialized in D3D12 mode:
      #include "RenderDeviceFactoryD3D12.h" using namespace Diligent; // ...  GetEngineFactoryD3D12Type GetEngineFactoryD3D12 = nullptr; // Load the dll and import GetEngineFactoryD3D12() function LoadGraphicsEngineD3D12(GetEngineFactoryD3D12); auto *pFactoryD3D11 = GetEngineFactoryD3D12(); EngineD3D12Attribs EngD3D12Attribs; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[0] = 1024; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[1] = 32; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[2] = 16; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[3] = 16; EngD3D12Attribs.NumCommandsToFlushCmdList = 64; RefCntAutoPtr<IRenderDevice> pRenderDevice; RefCntAutoPtr<IDeviceContext> pImmediateContext; SwapChainDesc SwapChainDesc; RefCntAutoPtr<ISwapChain> pSwapChain; pFactoryD3D11->CreateDeviceAndContextsD3D12( EngD3D12Attribs, &pRenderDevice, &pImmediateContext, 0 ); pFactoryD3D11->CreateSwapChainD3D12( pRenderDevice, pImmediateContext, SwapChainDesc, hWnd, &pSwapChain ); Creating Resources
      Device resources are created by the render device. The two main resource types are buffers, which represent linear memory, and textures, which use memory layouts optimized for fast filtering. To create a buffer, you need to populate BufferDesc structure and call IRenderDevice::CreateBuffer(). The following code creates a uniform (constant) buffer:
      BufferDesc BuffDesc; BufferDesc.Name = "Uniform buffer"; BuffDesc.BindFlags = BIND_UNIFORM_BUFFER; BuffDesc.Usage = USAGE_DYNAMIC; BuffDesc.uiSizeInBytes = sizeof(ShaderConstants); BuffDesc.CPUAccessFlags = CPU_ACCESS_WRITE; m_pDevice->CreateBuffer( BuffDesc, BufferData(), &m_pConstantBuffer ); Similar, to create a texture, populate TextureDesc structure and call IRenderDevice::CreateTexture() as in the following example:
      TextureDesc TexDesc; TexDesc.Name = "My texture 2D"; TexDesc.Type = TEXTURE_TYPE_2D; TexDesc.Width = 1024; TexDesc.Height = 1024; TexDesc.Format = TEX_FORMAT_RGBA8_UNORM; TexDesc.Usage = USAGE_DEFAULT; TexDesc.BindFlags = BIND_SHADER_RESOURCE | BIND_RENDER_TARGET | BIND_UNORDERED_ACCESS; TexDesc.Name = "Sample 2D Texture"; m_pRenderDevice->CreateTexture( TexDesc, TextureData(), &m_pTestTex ); Initializing Pipeline State
      Diligent Engine follows Direct3D12 style to configure the graphics/compute pipeline. One big Pipelines State Object (PSO) encompasses all required states (all shader stages, input layout description, depth stencil, rasterizer and blend state descriptions etc.)
      Creating Shaders
      To create a shader, populate ShaderCreationAttribs structure. An important member is ShaderCreationAttribs::SourceLanguage. The following are valid values for this member:
      SHADER_SOURCE_LANGUAGE_DEFAULT  - The shader source format matches the underlying graphics API: HLSL for D3D11 or D3D12 mode, and GLSL for OpenGL and OpenGLES modes. SHADER_SOURCE_LANGUAGE_HLSL  - The shader source is in HLSL. For OpenGL and OpenGLES modes, the source code will be converted to GLSL. See shader converter for details. SHADER_SOURCE_LANGUAGE_GLSL  - The shader source is in GLSL. There is currently no GLSL to HLSL converter. To allow grouping of resources based on the frequency of expected change, Diligent Engine introduces classification of shader variables:
      Static variables (SHADER_VARIABLE_TYPE_STATIC) are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. Mutable variables (SHADER_VARIABLE_TYPE_MUTABLE) define resources that are expected to change on a per-material frequency. Examples may include diffuse textures, normal maps etc. Dynamic variables (SHADER_VARIABLE_TYPE_DYNAMIC) are expected to change frequently and randomly. This post describes the resource binding model in Diligent Engine.
      The following is an example of shader initialization:
      ShaderCreationAttribs Attrs; Attrs.Desc.Name = "MyPixelShader"; Attrs.FilePath = "MyShaderFile.fx"; Attrs.SearchDirectories = "shaders;shaders\\inc;"; Attrs.EntryPoint = "MyPixelShader"; Attrs.Desc.ShaderType = SHADER_TYPE_PIXEL; Attrs.SourceLanguage = SHADER_SOURCE_LANGUAGE_HLSL; BasicShaderSourceStreamFactory BasicSSSFactory(Attrs.SearchDirectories); Attrs.pShaderSourceStreamFactory = &BasicSSSFactory; ShaderVariableDesc ShaderVars[] =  {     {"g_StaticTexture", SHADER_VARIABLE_TYPE_STATIC},     {"g_MutableTexture", SHADER_VARIABLE_TYPE_MUTABLE},     {"g_DynamicTexture", SHADER_VARIABLE_TYPE_DYNAMIC} }; Attrs.Desc.VariableDesc = ShaderVars; Attrs.Desc.NumVariables = _countof(ShaderVars); Attrs.Desc.DefaultVariableType = SHADER_VARIABLE_TYPE_STATIC; StaticSamplerDesc StaticSampler; StaticSampler.Desc.MinFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MagFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MipFilter = FILTER_TYPE_LINEAR; StaticSampler.TextureName = "g_MutableTexture"; Attrs.Desc.NumStaticSamplers = 1; Attrs.Desc.StaticSamplers = &StaticSampler; ShaderMacroHelper Macros; Macros.AddShaderMacro("USE_SHADOWS", 1); Macros.AddShaderMacro("NUM_SHADOW_SAMPLES", 4); Macros.Finalize(); Attrs.Macros = Macros; RefCntAutoPtr<IShader> pShader; m_pDevice->CreateShader( Attrs, &pShader ); Creating the Pipeline State Object
      To create a pipeline state object, define instance of PipelineStateDesc structure. The structure defines the pipeline specifics such as if the pipeline is a compute pipeline, number and format of render targets as well as depth-stencil format:
      // This is a graphics pipeline PSODesc.IsComputePipeline = false; PSODesc.GraphicsPipeline.NumRenderTargets = 1; PSODesc.GraphicsPipeline.RTVFormats[0] = TEX_FORMAT_RGBA8_UNORM_SRGB; PSODesc.GraphicsPipeline.DSVFormat = TEX_FORMAT_D32_FLOAT; The structure also defines depth-stencil, rasterizer, blend state, input layout and other parameters. For instance, rasterizer state can be defined as in the code snippet below:
      // Init rasterizer state RasterizerStateDesc &RasterizerDesc = PSODesc.GraphicsPipeline.RasterizerDesc; RasterizerDesc.FillMode = FILL_MODE_SOLID; RasterizerDesc.CullMode = CULL_MODE_NONE; RasterizerDesc.FrontCounterClockwise = True; RasterizerDesc.ScissorEnable = True; //RSDesc.MultisampleEnable = false; // do not allow msaa (fonts would be degraded) RasterizerDesc.AntialiasedLineEnable = False; When all fields are populated, call IRenderDevice::CreatePipelineState() to create the PSO:
      m_pDev->CreatePipelineState(PSODesc, &m_pPSO); Binding Shader Resources
      Shader resource binding in Diligent Engine is based on grouping variables in 3 different groups (static, mutable and dynamic). Static variables are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. They are bound directly to the shader object:
      PixelShader->GetShaderVariable( "g_tex2DShadowMap" )->Set( pShadowMapSRV ); Mutable and dynamic variables are bound via a new object called Shader Resource Binding (SRB), which is created by the pipeline state:
      m_pPSO->CreateShaderResourceBinding(&m_pSRB); Dynamic and mutable resources are then bound through SRB object:
      m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "tex2DDiffuse")->Set(pDiffuseTexSRV); m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "cbRandomAttribs")->Set(pRandomAttrsCB); The difference between mutable and dynamic resources is that mutable ones can only be set once for every instance of a shader resource binding. Dynamic resources can be set multiple times. It is important to properly set the variable type as this may affect performance. Static variables are generally most efficient, followed by mutable. Dynamic variables are most expensive from performance point of view. This post explains shader resource binding in more details.
      Setting the Pipeline State and Invoking Draw Command
      Before any draw command can be invoked, all required vertex and index buffers as well as the pipeline state should be bound to the device context:
      // Clear render target const float zero[4] = {0, 0, 0, 0}; m_pContext->ClearRenderTarget(nullptr, zero); // Set vertex and index buffers IBuffer *buffer[] = {m_pVertexBuffer}; Uint32 offsets[] = {0}; Uint32 strides[] = {sizeof(MyVertex)}; m_pContext->SetVertexBuffers(0, 1, buffer, strides, offsets, SET_VERTEX_BUFFERS_FLAG_RESET); m_pContext->SetIndexBuffer(m_pIndexBuffer, 0); m_pContext->SetPipelineState(m_pPSO); Also, all shader resources must be committed to the device context:
      m_pContext->CommitShaderResources(m_pSRB, COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES); When all required states and resources are bound, IDeviceContext::Draw() can be used to execute draw command or IDeviceContext::DispatchCompute() can be used to execute compute command. Note that for a draw command, graphics pipeline must be bound, and for dispatch command, compute pipeline must be bound. Draw() takes DrawAttribs structure as an argument. The structure members define all attributes required to perform the command (primitive topology, number of vertices or indices, if draw call is indexed or not, if draw call is instanced or not, if draw call is indirect or not, etc.). For example:
      DrawAttribs attrs; attrs.IsIndexed = true; attrs.IndexType = VT_UINT16; attrs.NumIndices = 36; attrs.Topology = PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; pContext->Draw(attrs); Tutorials and Samples
      The GitHub repository contains a number of tutorials and sample applications that demonstrate the API usage.
      Tutorial 01 - Hello Triangle This tutorial shows how to render a simple triangle using Diligent Engine API.   Tutorial 02 - Cube This tutorial demonstrates how to render an actual 3D object, a cube. It shows how to load shaders from files, create and use vertex, index and uniform buffers.   Tutorial 03 - Texturing This tutorial demonstrates how to apply a texture to a 3D object. It shows how to load a texture from file, create shader resource binding object and how to sample a texture in the shader.   Tutorial 04 - Instancing This tutorial demonstrates how to use instancing to render multiple copies of one object using unique transformation matrix for every copy.   Tutorial 05 - Texture Array This tutorial demonstrates how to combine instancing with texture arrays to use unique texture for every instance.   Tutorial 06 - Multithreading This tutorial shows how to generate command lists in parallel from multiple threads.   Tutorial 07 - Geometry Shader This tutorial shows how to use geometry shader to render smooth wireframe.   Tutorial 08 - Tessellation This tutorial shows how to use hardware tessellation to implement simple adaptive terrain rendering algorithm.   Tutorial_09 - Quads This tutorial shows how to render multiple 2D quads, frequently swithcing textures and blend modes.
      AntTweakBar sample demonstrates how to use AntTweakBar library to create simple user interface.

      Atmospheric scattering sample is a more advanced example. It demonstrates how Diligent Engine can be used to implement various rendering tasks: loading textures from files, using complex shaders, rendering to textures, using compute shaders and unordered access views, etc. 

      The repository includes Asteroids performance benchmark based on this demo developed by Intel. It renders 50,000 unique textured asteroids and lets compare performance of D3D11 and D3D12 implementations. Every asteroid is a combination of one of 1000 unique meshes and one of 10 unique textures. 

      Integration with Unity
      Diligent Engine supports integration with Unity through Unity low-level native plugin interface. The engine relies on Native API Interoperability to attach to the graphics API initialized by Unity. After Diligent Engine device and context are created, they can be used us usual to create resources and issue rendering commands. GhostCubePlugin shows an example how Diligent Engine can be used to render a ghost cube only visible as a reflection in a mirror.

    • By Yxjmir
      I'm trying to load data from a .gltf file into a struct to use to load a .bin file. I don't think there is a problem with how the vertex positions are loaded, but with the indices. This is what I get when drawing with glDrawArrays(GL_LINES, ...):

      Also, using glDrawElements gives a similar result. Since it looks like its drawing triangles using the wrong vertices for each face, I'm assuming it needs an index buffer/element buffer. (I'm not sure why there is a line going through part of it, it doesn't look like it belongs to a side, re-exported it without texture coordinates checked, and its not there)
      I'm using jsoncpp to load the GLTF file, its format is based on JSON. Here is the gltf struct I'm using, and how I parse the file:
      #define GLTF_TARGET_ARRAY_BUFFER (34962) #define GLTF_TARGET_ELEMENT_ARRAY_BUFFER (34963) #define GLTF_COMPONENT_TYPE_BYTE (5120) #define GLTF_COMPONENT_TYPE_UNSIGNED_BYTE (5121) #define GLTF_COMPONENT_TYPE_SHORT (5122) #define GLTF_COMPONENT_TYPE_UNSIGNED_SHORT (5123) #define GLTF_COMPONENT_TYPE_INT (5124) #define GLTF_COMPONENT_TYPE_UNSIGNED_INT (5125) #define GLTF_COMPONENT_TYPE_FLOAT (5126) #define GLTF_COMPONENT_TYPE_DOUBLE (5127) #define GLTF_PARAMETER_TYPE_BYTE (5120) #define GLTF_PARAMETER_TYPE_UNSIGNED_BYTE (5121) #define GLTF_PARAMETER_TYPE_SHORT (5122) #define GLTF_PARAMETER_TYPE_UNSIGNED_SHORT (5123) #define GLTF_PARAMETER_TYPE_INT (5124) #define GLTF_PARAMETER_TYPE_UNSIGNED_INT (5125) #define GLTF_PARAMETER_TYPE_FLOAT (5126) #define GLTF_PARAMETER_TYPE_FLOAT_VEC2 (35664) #define GLTF_PARAMETER_TYPE_FLOAT_VEC3 (35665) #define GLTF_PARAMETER_TYPE_FLOAT_VEC4 (35666) struct GLTF { struct Accessor { USHORT bufferView; USHORT componentType; UINT count; vector<INT> max; vector<INT> min; string type; }; vector<Accessor> m_accessors; struct Asset { string copyright; string generator; string version; }m_asset; struct BufferView { UINT buffer; UINT byteLength; UINT byteOffset; UINT target; }; vector<BufferView> m_bufferViews; struct Buffer { UINT byteLength; string uri; }; vector<Buffer> m_buffers; vector<string> m_Images; struct Material { string name; string alphaMode; Vec4 baseColorFactor; UINT baseColorTexture; UINT normalTexture; float metallicFactor; }; vector<Material> m_materials; struct Meshes { string name; struct Primitive { vector<UINT> attributes_indices; UINT indices; UINT material; }; vector<Primitive> primitives; }; vector<Meshes> m_meshes; struct Nodes { int mesh; string name; Vec3 translation; }; vector<Nodes> m_nodes; struct Scenes { UINT index; string name; vector<UINT> nodes; }; vector<Scenes> m_scenes; vector<UINT> samplers; struct Textures { UINT sampler; UINT source; }; vector<Textures> m_textures; map<UINT, string> attributes_map; map<UINT, string> textures_map; }; GLTF m_gltf; // This is actually in the Mesh class bool Mesh::Load(string sFilename) { string sFileAsString; stringstream sStream; ifstream fin(sFilename); sStream << fin.rdbuf(); fin.close(); sFileAsString = sStream.str(); Json::Reader r; Json::Value root; if (!r.parse(sFileAsString, root)) { string errors = r.getFormatedErrorMessages(); if (errors != "") { // TODO: Log errors return false; } } if (root.isNull()) return false; Json::Value object; Json::Value value; // Load Accessors array, these are referenced by attributes with their index value object = root.get("accessors", Json::Value()); // store object with key "accessors", if not found it will default to Json::Value() if (!object.isNull()) { for (Json::ValueIterator it = object.begin(); it != object.end(); it++) { GLTF::Accessor accessor; value = (*it).get("bufferView", Json::Value()); if (!value.isNull()) accessor.bufferView = value.asUINT(); else return false; value = (*it).get("componentType", Json::Value()); if (!value.isNull()) accessor.componentType = value.asUINT(); else return false; value = (*it).get("count", Json::Value()); if (!value.isNull()) accessor.count = value.asUINT(); else return false; value = (*it).get("type", Json::Value()); if (!value.isNull()) accessor.type = value.asString(); else return false; m_gltf.accessors.push_back(accessor); } } else return false; object = root.get("bufferViews", Json::Value()); if(!object.isNull()) { for (Json::ValueIterator it = object.begin(); it != object.end(); it++) { GLTF::BufferView bufferView; value = (*it).get("buffer", Json::Value()); if(!value.isNull()) bufferView.buffer = value.asUInt(); else return false; value = (*it).get("byteLength", Json::Value()); if(!value.isNull()) bufferView.byteLength = value.asUInt(); else return false; value = (*it).get("byteOffset", Json::Value()); if(!value.isNull()) bufferView.byteOffset = value.asUInt(); else return false; value = (*it).get("target", Json::Value()); if(!value.isNull()) bufferView.target = value.asUInt(); else return false; m_gltf.m_bufferViews.push_back(bufferView); } } else return false; object = root.get("buffers", Json::Value()); if(!object.isNull()) { for (Json::ValueIterator it = object.begin(); it != object.end(); it++) { GLTF::Buffer buffer; value = (*it).get("byteLength", Json::Value()); if(!value.isNull()) buffer.byteLength = value.asUInt(); else return false; // Store the filename of the .bin file value = (*it).get("uri", Json::Value()); if(!value.isNull()) buffer.uri = value.asString(); else return false; } } else return false; object = root.get("meshes", Json::Value()); if(!object.isNull()) { for(Json::ValueIterator it = object.begin(); it != object.end(); it++) { GLTF::Meshes mesh; value = (*it).get("primitives", Json::Value()); for(Json::ValueIterator value_it = value.begin(); value_it != value.end(); value_it++) { GLTF::Meshes::Primitive primitive; Json::Value attributes; attributes = (*value_it).get("attributes", Json::Value()); vector<string> memberNames = attributes.getMemberNames(); for(size_t i = 0; i < memberNames.size(); i++) { Json::Value member; member = attributes.get(memeberNames[i], Json::Value()); if(!member.isNull()) { primitive.attributes_indices.push_back(member.asUInt()); m_gltf.attributes_map[member.asUInt()] = memberNames[i]; // Each of these referes to an accessor by indice, so each indice should be unique, and they are when loading a cube } else return false; } // Indice of the accessor used for indices Json::Value indices; indices = (*value_it).get("indices", Json::Value()); primitive.indices = indices.asUInt(); mesh.primitives.push_back(primitive); } m_gltf.m_meshes.push_back(mesh); } } vector<float> vertexData; vector<USHORT> indiceData; int vertexBufferSizeTotal = 0; int elementBufferSizeTotal = 0; GLTF::Meshes mesh = m_gltf.m_meshes[0]; vector<GLTF::Meshes::Primitive> primitives = mesh.primitives; // trying to make the code easier to read for (size_t p = 0; p < primitive.size(); p++) { vector<UINT> attributes = primitives[p].attributes_indices; for(size_t a = 0; a < attributes.size(); a++) { GLTF::Accessor accessor = m_gltf.m_accessors[attributes[a]]; GLTF::BufferView bufferView = m_gltf.m_bufferViews[accessor.bufferView]; UINT target = bufferView.target; if(target == GLTF_TARGET_ARRAY_BUFFER) vertexBufferSizeTotal += bufferView.byteLength; } UINT indice = primitives[p].indices; GLTF::BufferView bufferView = m_gltf.m_bufferViews[indice]; UINT target = bufferView.target; if(target == GLTF_TARGET_ELEMENT_ARRAY_BUFFER) elementBufferSizeTotal += bufferView.byteLength; } // These have already been generated glBindVertexArray(g_pGame->m_VAO); glBindBuffer(GL_ARRAY_BUFFER, g_pGame->m_VBO); glBufferData(GL_ARRAY_BUFFER, vertexBufferSizeTotal, nullptr, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_pGame->m_EBO); glBufferData(GL_ELEMENT_ARRAY_BUFFER, elementBufferSizeTotal, nullptr, GL_STATIC_DRAW); int offset = 0; int offset_indice = 0; for (size_t p = 0; p < primitive.size(); p++) { vector<UINT> attributes = primitives[p].attributes_indices; int pos = sFilename.find_last_of('\\') + 1; string sFolder = sFilename.substr(0, pos); for (size_t a = 0; a < attributes.size(); a++) { LoadBufferView(sFolder, attributes[a], data, offset); } UINT indice = primitives[p].indices; GLTF::BufferView bufferView_indice = m_gltf.m_bufferViews[indice]; UINT target_indice = bufferView_indice.target; bool result = LoadBufferView(sFolder, indice, data, offset_indice); if(!result) return false; } return true; } bool Mesh::LoadBufferView(string sFolder, UINT a, vector<float> &vertexData, vector<float> &indiceData, int &offset_indice) { ifstream fin; GLTF::Accessor accessor = m_gltf.m_accessors[a]; GLTF::BufferView bufferView = m_gltf.m_bufferViews[accessor.bufferView]; GLTF::Buffer buffer = m_gltf.m_buffers[bufferView.buffer]; const size_t count = accessor.count; UINT target = bufferView.target; int elementSize; int componentSize; int numComponents; string sFilename_bin = sFolder + buffer.uri; fin.open(sFilename_bin, ios::binary); if (fin.fail()) { return false; } fin.seekg(bufferView.byteOffset, ios::beg); switch (accessor.componentType) { case GLTF_COMPONENT_TYPE_BYTE: componentSize = sizeof(GLbyte); break; case GLTF_COMPONENT_TYPE_UNSIGNED_BYTE: componentSize = sizeof(GLubyte); break; case GLTF_COMPONENT_TYPE_SHORT: componentSize = sizeof(GLshort); break; case GLTF_COMPONENT_TYPE_UNSIGNED_SHORT: componentSize = sizeof(GLushort); break; case GLTF_COMPONENT_TYPE_INT: componentSize = sizeof(GLint); break; case GLTF_COMPONENT_TYPE_UNSIGNED_INT: componentSize = sizeof(GLuint); break; case GLTF_COMPONENT_TYPE_FLOAT: componentSize = sizeof(GLfloat); break; case GLTF_COMPONENT_TYPE_DOUBLE: componentSize = sizeof(GLfloat); break; default: componentSize = 0; break; } if (accessor.type == "SCALAR") numComponents = 1; else if (accessor.type == "VEC2") numComponents = 2; else if (accessor.type == "VEC3") numComponents = 3; else if (accessor.type == "VEC4") numComponents = 4; else if (accessor.type == "MAT2") numComponents = 4; else if (accessor.type == "MAT3") numComponents = 9; else if (accessor.type == "MAT4") numComponents = 16; else return false; vector<float> fSubdata; // I'm pretty sure this is one of the problems, or related to it. If I use vector<USHORT> only half of the vector if filled, if I use GLubyte, the entire vector is filled, but the data might not be right vector<GLubyte> nSubdata; elementSize = (componentSize) * (numComponents); // Only fill the vector I'm using if (accessor.type == "SCALAR") { nSubdata.resize(count * numComponents); fin.read(reinterpret_cast<char*>(&nSubdata[0]), count/* * elementSize*/); // I commented this out since I'm not sure which size the .bin is storing the indice values, and I kept getting runtime errors, no matter what type I used for nSubdata } else { fSubdata.resize(count * numComponents); fin.read(reinterpret_cast<char*>(&fSubdata[0]), count * elementSize); } switch (target) { case GLTF_TARGET_ARRAY_BUFFER: { vertexData.insert(vertexData.end(), fSubdata.begin(), fSubdata.end()); glBindBuffer(GL_ARRAY_BUFFER, g_pGame->m_VBO); glBufferSubData(GL_ARRAY_BUFFER, offset, fSubdata.size() * componentSize, &fSubdata[0]); int attribute_index = 0; // I'm only loading vertex positions, the only attribute stored in the files for now glEnableVertexAttribArray(attribute_index); glVertexAttribPointer(0, numComponents, GL_FLOAT, GL_FALSE, componentSize * numComponents, (void*)(offset)); }break; case GLTF_TARGET_ELEMENT_ARRAY_BUFFER: { indiceData.insert(indiceData.end(), nSubdata.begin(), nSubdata.end()); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_pGame->m_EBO); // This is another area where I'm not sure of the correct values, but if componentSize is the correct size for the type being used it should be correct glBufferSubData is expecting the size in bytes, right? glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, offset, nSubdata.size() * componentSize, &nSubdata[0]); }break; default: return false; } if (accessor.type == "SCALAR") offset += nSubdata.size() * componentSize; else offset += fSubdata.size() * componentSize; fin.close(); return true; } these are the draw calls, I only use one at a time, but neither is currently display properly, g_pGame->m_indices is the same as indiceData vector, and vertexCount contains the correct vertex count, but I forgot to copy the lines of code containing where I set them, which is at the end of Mesh::Load(), I double checked the values to make sure.
      glDrawElements(GL_LINES, g_pGame->m_indices.size(), GL_UNSIGNED_BYTE, (void*)0); // Only shows with GL_UNSIGNED_BYTE
      glDrawArrays(GL_LINES, 0, g_pGame->m_vertexCount);
      So, I'm asking what type should I use for the indices? it doesn't seem to be unsigned short, which is what I selected with the Khronos Group Exporter for blender. Also, am I reading part or all of the .bin file wrong?
    • By ritzmax72
      That means how do I use base DirectX or OpenGL api's to make a physics based destruction simulation? 
      Will it be just smart rendering or something else is required?
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL Texture Binding with Material Class

This topic is 4587 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Im having a problem binding textures that I am loading from an .obj Material library. My texture loading code works if I load each texture individually, then all textures work great. But if a load the textures while parsing the Material Library file only the last texture loaded can be rendered. I have written a smaller program to try to get to the root of the problem. Basically, an instance of my Material class will load a texture and store the texture ID so that it can be bound when rendering. Any suggestions? Can anyone tell what I am doing wrong? Thanks for any help. Main.cpp:
#include <windows.h>		// Header File For Windows
#include <stdio.h>			// Header File For Standard Input/Output
#include <gl\gl.h>			// Header File For The OpenGL32 Library
#include <gl\glu.h>			// Header File For The GLu32 Library
#include <gl\glaux.h>		// Header File For The Glaux Library

#include <ios>
#include <iostream>
#include <string>
#include <tchar.h>
#include <windowsx.h>
#include <fstream>

#include <vector>

#include "Material.h"

using namespace std;

HDC			hDC=NULL;		// Private GDI Device Context
HGLRC		hRC=NULL;		// Permanent Rendering Context
HWND		hWnd=NULL;		// Holds Our Window Handle
HINSTANCE	hInstance;		// Holds The Instance Of The Application

bool	active=TRUE;		// Window Active Flag Set To TRUE By Default

// Log file
ofstream logFile("C:\\Documents and Settings\\Dave\\My Documents\\Visual Studio Projects\\TextureManager\\Debug\\log.txt", ios::out);

// Materials Container
std::vector<Material> materials;


// Number of textures loaded
int numTexture = 0;

void checkGlErrors() {
	int glError = 1;
	while (glError != 0) {
		glError = glGetError();
		if (glError != 0) {
			logFile << "[ERROR] glGetError = " << glError << endl;

// Call to load a Bitmap
int loadBitmap(const char *filename) 
	logFile << "	loadBitmap called: file name = " << filename << endl;
    FILE *file;				// File pointer
    unsigned char *texture; // The pointer to the memory in which we will load the texture
    // windows.h gives us these types to work with the Bitmap files
    BITMAPFILEHEADER fileheader; 
    BITMAPINFOHEADER infoheader;
    RGBTRIPLE rgb;

	// Increment the texture count
	logFile << "		numTexture = " << numTexture << endl;

	// Open the file for reading
	if ( (file = fopen(filename, "rb")) == NULL) {
		logFile << "		COULDN'T OPEN FILE" << endl;
		return (-1); 
	} else {
		logFile << "		The file has been opened for reading." << endl;
	// Read the fileheader
    fread(&fileheader, sizeof(fileheader), 1, file); 
	// Jump the fileheader
    fseek(file, sizeof(fileheader), SEEK_SET); 
	// and read the infoheader
    fread(&infoheader, sizeof(infoheader), 1, file); 

    // Allocate the memory for our image (width * height * color deep)
    texture = (byte *) malloc(infoheader.biWidth * infoheader.biHeight * 4);
    // And fill it with zeros
    memset(texture, 0, infoheader.biWidth * infoheader.biHeight * 4);
    // Read in the image
	int j = 0;
    for (int i = 0; i < infoheader.biWidth*infoheader.biHeight; ++i) {            
        // We load an RGB value from the file
        fread(&rgb, sizeof(rgb), 1, file); 

        // And store it
        texture[j+0] = rgb.rgbtRed;		// Red component
        texture[j+1] = rgb.rgbtGreen;	// Green component
        texture[j+2] = rgb.rgbtBlue;	// Blue component
        texture[j+3] = 255;				// Alpha value
        j += 4;							// Go to the next position

	// Close the file stream
	// Bind the ID texture
    glBindTexture(GL_TEXTURE_2D, numTexture); 

	// Define the 2d texture
    glTexImage2D(GL_TEXTURE_2D, 0, 4, infoheader.biWidth, infoheader.biHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, texture);

    // Sets the texture parameters

	// Use only the texture map

    // And create 2d mipmaps for the minifying function
    gluBuild2DMipmaps(GL_TEXTURE_2D, 4, infoheader.biWidth, infoheader.biHeight, GL_RGBA, GL_UNSIGNED_BYTE, texture);

	// Free the memory used to load the texture


	// Returns texture ID for the new texture
	int isTexture = glIsTexture(numTexture);
	logFile << "		is a texture ? = " << isTexture << endl;
    return (numTexture); 

// Load an Alias Wavefront .obj Material Library
bool loadMaterialFile(const char filename[]) {

	std::ifstream ifs(filename);

	if (ifs) {
		Material *pmat = 0;

		while (!ifs.eof()) {

			std::string s;
			ifs >> s;

			if (s == "newmtl") {
				Material mat;
				ifs >> mat.name;
				pmat = &(materials[materials.size()-1]);

			} else if (s == "map_Kd") {

				char buffer[512];
				char* ptr = buffer;
				while (*ptr == ' ' || *ptr == '\t') {
				pmat->diffuseTextureName = ptr;
		return true;
	logFile << "File not Found!!!" << endl;

	return false;

// Resize the GL Scene
GLvoid ReSizeGLScene(GLsizei width, GLsizei height)		
	// Prevent A Divide By Zero By
	if (height==0)										

	// Reset The Current Viewport

	// Select and Reset The Projection Matrix

	// Calculate The Aspect Ratio Of The Window

	// Select and Reset The Modelview Matrix

// All Setup For OpenGL Goes Here
int InitGL(GLvoid)										
	glEnable(GL_TEXTURE_2D);							// Enable Texture Mapping ( NEW )
	glShadeModel(GL_SMOOTH);							// Enable Smooth Shading
	glClearColor(0.0f, 0.0f, 0.0f, 0.5f);				// Black Background
	glClearDepth(1.0f);									// Depth Buffer Setup
	glEnable(GL_DEPTH_TEST);							// Enables Depth Testing
	glDepthFunc(GL_LEQUAL);								// The Type Of Depth Testing To Do
	glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);	// Really Nice Perspective Calculations

	// load material file
	if (!loadMaterialFile("squares2.mtl")) {
		logFile << "Materials NOT loaded." << endl;
	} else {
    	logFile << "Materials loaded - materials.size() = " << materials.size() << endl;

	// Print out the loaded materials props of interest
	for (int i = 0; i < materials.size(); ++i) {
		logFile << "Material " << i << ":" << endl;
		logFile << "    name = " << materials.name << endl;
		logFile << "    diffuseTextureName = " << materials.diffuseTextureName << endl;
		logFile << "    diffuseTextureId = " << materials.diffuseTextureId << endl;
		int isTexture = glIsTexture(materials.diffuseTextureId);
		logFile << "    isTexture? = " << isTexture << endl;

	// Check for errors

	// Initialization completed OK
	return TRUE;	

// Draw the scene
// Render 4 quads - each with a different Material
int DrawGLScene(GLvoid)	

	// Clear The Screen And The Depth Buffer and Reset The View

	// move the camera a little

	int isTexture = glIsTexture(materials[0].diffuseTextureId);
	logFile << "  glIsTexture? materials[0] = " << isTexture << endl;
		glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f,  0.0f);
		glTexCoord2f(1.0f, 0.0f); glVertex3f( 0.0f, -1.0f,  0.0f);
		glTexCoord2f(1.0f, 1.0f); glVertex3f( 0.0f,  0.0f,  0.0f);
		glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f,  0.0f,  0.0f);

	isTexture = glIsTexture(materials[1].diffuseTextureId);
	logFile << "  glIsTexture? materials[1] = " << isTexture << endl;
		glTexCoord2f(0.0f, 0.0f); glVertex3f(0.0f, 0.0f,  1.0f);
		glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, 0.0f,  1.0f);
		glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f,  1.0f,  1.0f);
		glTexCoord2f(0.0f, 1.0f); glVertex3f(0.0f,  1.0f,  1.0f);		

	return TRUE;

// Properly Kill The Window
GLvoid KillGLWindow(GLvoid)								
	// Do We Have A Rendering Context?
	if (hRC)											
		// Are We Able To Release The DC And RC Contexts?
		if (!wglMakeCurrent(NULL,NULL))					

		// Are We Able To Delete The RC?
		if (!wglDeleteContext(hRC))						
			MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
		hRC = NULL;
	// Are We Able To Release The DC
	if (hDC && !ReleaseDC(hWnd,hDC))					
		MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
		hDC = NULL;
	// Are We Able To Destroy The Window?
	if (hWnd && !DestroyWindow(hWnd))					
		MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
		hWnd = NULL;
	// Are We Able To Unregister Class
	if (!UnregisterClass("OpenGL",hInstance))			
		MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
		hInstance = NULL;

// Create an OpenGL Window 
BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag)

	logFile << "CreateGLWindow called." << endl;

	GLuint		PixelFormat;			// Holds The Results After Searching For A Match
	WNDCLASS	wc;						// Windows Class Structure
	DWORD		dwExstyle;				// Window Extended style
	DWORD		dwstyle;				// Window style
	RECT		WindowRect;				// Grabs Rectangle Upper Left / Lower Right Values
	WindowRect.left=(long)0;			// Set Left Value To 0
	WindowRect.right=(long)width;		// Set Right Value To Requested Width
	WindowRect.top=(long)0;				// Set Top Value To 0
	WindowRect.bottom=(long)height;		// Set Bottom Value To Requested Height

	hInstance			= GetModuleHandle(NULL);				// Grab An Instance For Our Window
	wc.style			= CS_HREDRAW | CS_VREDRAW | CS_OWNDC;	// Redraw On Size, And Own DC For Window.
	wc.lpfnWndProc		= (WNDPROC) WndProc;					// WndProc Handles Messages
	wc.cbClsExtra		= 0;									// No Extra Window Data
	wc.cbWndExtra		= 0;									// No Extra Window Data
	wc.hInstance		= hInstance;							// Set The Instance
	wc.hIcon			= LoadIcon(NULL, IDI_WINLOGO);			// Load The Default Icon
	wc.hCursor			= LoadCursor(NULL, IDC_ARROW);			// Load The Arrow Pointer
	wc.hbrBackground	= NULL;									// No Background Required For GL
	wc.lpszMenuName		= NULL;									// We Don't Want A Menu
	wc.lpszClassName	= "OpenGL";								// Set The Class Name

	if (!RegisterClass(&wc))									// Attempt To Register The Window Class
		MessageBox(NULL,"Failed To Register The Window Class.","ERROR",MB_OK|MB_ICONEXCLAMATION);
		return FALSE;											// Return FALSE

	dwExstyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE;			// Window Extended style
	dwstyle=WS_OVERLAPPEDWINDOW;							// Windows style

	AdjustWindowRectEx(&WindowRect, dwstyle, FALSE, dwExstyle);		// Adjust Window To True Requested Size

	// Create The Window
	if (!(hWnd=CreateWindowEx(	dwExstyle,							// Extended style For The Window
								"OpenGL",							// Class Name
								title,								// Window Title
								dwstyle |							// Defined Window style
								WS_CLIPSIBLINGS |					// Required Window style
								WS_CLIPCHILDREN,					// Required Window style
								0, 0,								// Window Position
								WindowRect.right-WindowRect.left,	// Calculate Window Width
								WindowRect.bottom-WindowRect.top,	// Calculate Window Height
								NULL,								// No Parent Window
								NULL,								// No Menu
								hInstance,							// Instance
								NULL)))								// Dont Pass Anything To WM_CREATE
		KillGLWindow();								// Reset The Display
		MessageBox(NULL,"Window Creation Error.","ERROR",MB_OK|MB_ICONEXCLAMATION);
		return FALSE;								// Return FALSE

	static	PIXELFORMATDESCRIPTOR pfd=				// pfd Tells Windows How We Want Things To Be
		sizeof(PIXELFORMATDESCRIPTOR),				// Size Of This Pixel Format Descriptor
		1,											// Version Number
		PFD_DRAW_TO_WINDOW |						// Format Must Support Window
		PFD_SUPPORT_OPENGL |						// Format Must Support OpenGL
		PFD_DOUBLEBUFFER,							// Must Support Double Buffering
		PFD_TYPE_RGBA,								// Request An RGBA Format
		bits,										// Select Our Color Depth
		0, 0, 0, 0, 0, 0,							// Color Bits Ignored
		0,											// No Alpha Buffer
		0,											// Shift Bit Ignored
		0,											// No Accumulation Buffer
		0, 0, 0, 0,									// Accumulation Bits Ignored
		16,											// 16Bit Z-Buffer (Depth Buffer)  
		0,											// No Stencil Buffer
		0,											// No Auxiliary Buffer
		PFD_MAIN_PLANE,								// Main Drawing Layer
		0,											// Reserved
		0, 0, 0										// Layer Masks Ignored
	if (!(hDC=GetDC(hWnd)))							// Did We Get A Device Context?
		KillGLWindow();								// Reset The Display
		MessageBox(NULL,"Can't Create A GL Device Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
		return FALSE;								// Return FALSE

	if (!(PixelFormat=ChoosePixelFormat(hDC,&pfd)))	// Did Windows Find A Matching Pixel Format?
		KillGLWindow();								// Reset The Display
		MessageBox(NULL,"Can't Find A Suitable PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
		return FALSE;								// Return FALSE

	if(!SetPixelFormat(hDC,PixelFormat,&pfd))		// Are We Able To Set The Pixel Format?
		KillGLWindow();								// Reset The Display
		MessageBox(NULL,"Can't Set The PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
		return FALSE;								// Return FALSE

	if (!(hRC=wglCreateContext(hDC)))				// Are We Able To Get A Rendering Context?
		KillGLWindow();								// Reset The Display
		MessageBox(NULL,"Can't Create A GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
		return FALSE;								// Return FALSE

	if(!wglMakeCurrent(hDC,hRC))					// Try To Activate The Rendering Context
		KillGLWindow();								// Reset The Display
		MessageBox(NULL,"Can't Activate The GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
		return FALSE;								// Return FALSE

	ShowWindow(hWnd,SW_SHOW);						// Show The Window
	SetForegroundWindow(hWnd);						// Slightly Higher Priority
	SetFocus(hWnd);									// Sets Keyboard Focus To The Window
	ReSizeGLScene(width, height);					// Set Up Our Perspective GL Screen

	if (!InitGL())									// Initialize Our Newly Created GL Window
		KillGLWindow();								// Reset The Display
		MessageBox(NULL,"Initialization Failed.","ERROR",MB_OK|MB_ICONEXCLAMATION);
		return FALSE;								// Return FALSE

	return TRUE;									// Success

LRESULT CALLBACK WndProc(	HWND	hWnd,			// Handle For This Window
							UINT	uMsg,			// Message For This Window
							WPARAM	wParam,			// Additional Message Information
							LPARAM	lParam)			// Additional Message Information
	switch (uMsg)									// Check For Windows Messages
		case WM_ACTIVATE:							// Watch For Window Activate Message
			if (!HIWORD(wParam))					// Check Minimization State
				active=TRUE;						// Program Is Active
				active=FALSE;						// Program Is No Longer Active

			return 0;								// Return To The Message Loop

		case WM_SYSCOMMAND:							// Intercept System Commands
			switch (wParam)							// Check System Calls
				case SC_SCREENSAVE:					// Screensaver Trying To Start?
				case SC_MONITORPOWER:				// Monitor Trying To Enter Powersave?
				return 0;							// Prevent From Happening
			break;									// Exit

		case WM_CLOSE:								// Did We Receive A Close Message?
			PostQuitMessage(0);						// Send A Quit Message
			return 0;								// Jump Back

		case WM_SIZE:								// Resize The OpenGL Window
			ReSizeGLScene(LOWORD(lParam),HIWORD(lParam));  // LoWord=Width, HiWord=Height
			return 0;								// Jump Back

	// Pass All Unhandled Messages To DefWindowProc
	return DefWindowProc(hWnd,uMsg,wParam,lParam);

int WINAPI WinMain(	HINSTANCE	hInstance,			// Instance
					HINSTANCE	hPrevInstance,		// Previous Instance
					LPSTR		lpCmdLine,			// Command Line Parameters
					int			nCmdShow)			// Window Show State
	MSG		msg;									// Windows Message Structure
	BOOL	done=FALSE;								// Bool Variable To Exit Loop

	// Create Our OpenGL Window
	if (!CreateGLWindow("Materials", 640, 480, 16, false))
		// Quit If Window Was Not Created
		return 0;									

	// main loop
	while (!done)									
		// Is There A Message Waiting?
		if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))	
			// Have We Received A Quit Message?
			if (msg.message==WM_QUIT)				
				// If So done=TRUE
				// Translate and Dispatch the message
			// Draw The Scene.
			if ((active && !DrawGLScene()))
				// Quit signaled
				done = TRUE;
				// Swap Buffers (Double Buffering)

	// Shutdown
	KillGLWindow();									// Kill The Window
	return (msg.wParam);							// Exit The Program

End Main.cpp Material.h:
#ifndef MATERIAL_H
#define MATERIAL_H

#include <stdio.h>
#include <fstream>
#include <ios>
#include <iostream>
#include <string>

//#include "Engine.h"
#include <windows.h>		// Header File For Windows
#include <stdio.h>			// Header File For Standard Input/Output
#include <gl\gl.h>			// Header File For The OpenGL32 Library
#include <gl\glu.h>			// Header File For The GLu32 Library
#include <gl\glaux.h>		// Header File For The Glaux Library

using namespace std;

class Material
	Material(const char *name);
	Material(const Material &mat);

	virtual ~Material();

	void loadDiffuseTexture();

	/** apply the material */
	void apply() const;

	std::string name;		//< material name

	int illum;				//< don't know :| Seems to always be 4
	float transparency[3];	//< transparency
	float intensity;		//< intensity
	float specularPower;	//< specular power
	float bumpDepth;		//< bump map depth. Only used if bump is relevent.

	mutable float ambientColor[4];	//< ambient
	mutable float diffuseColor[4];	//< diffuse
	mutable float specularColor[4];	//< specular

	std::string ambientTextureName;		//< ambient texture map name
	std::string diffuseTextureName;		//< diffuse texture map name
	std::string specularTextureName;	//< specular texture map name
	std::string bumpTextureName;		//< bump texture map name

	// OpenGL texture IDs
	unsigned int ambientTextureId;		//< ambient texture object ID
	unsigned int diffuseTextureId;		//< diffuse texture object ID
	unsigned int specularTextureId;		//< specular texture object ID
	unsigned int bumpTextureId;			//< bump map texture object ID



End Material.h Material.cpp:
#include "Material.h"

#include "TextureManager.h"
#include "Globals.h"

//#include "lesson6.h"

 * Material constructor
Material::Material() : name(), illum(4), intensity(1), specularPower(10), bumpDepth(1),
		ambientTextureName(), diffuseTextureName(), specularTextureName(), bumpTextureName() {

	ambientColor[0] = ambientColor[1] = ambientColor[2] = 
	diffuseColor[0] = diffuseColor[1] = diffuseColor[2] = 
	specularColor[0] = specularColor[1] = specularColor[2] = 0;
	ambientColor[3] = diffuseColor[3] = specularColor[3] = 1;
	transparency[0] = transparency[1] = transparency[2] = 1;
	ambientTextureId = diffuseTextureId = specularTextureId = bumpTextureId = 0;

 * Material Copy Constructor
Material::Material(const Material& mat) {
	ambientColor[0] = mat.ambientColor[0]; 
	ambientColor[1] = mat.ambientColor[1]; 
	ambientColor[2] = mat.ambientColor[2]; 
	ambientColor[3] = mat.ambientColor[3];

	diffuseColor[0] = mat.diffuseColor[0]; 
	diffuseColor[1] = mat.diffuseColor[1]; 
	diffuseColor[2] = mat.diffuseColor[2]; 
	diffuseColor[3] = mat.diffuseColor[3];

	specularColor[0] = mat.specularColor[0];
	specularColor[1] = mat.specularColor[1];
	specularColor[2] = mat.specularColor[2];
	specularColor[3] = mat.specularColor[3];

	transparency[0] = mat.transparency[0];
	transparency[1] = mat.transparency[1];
	transparency[2] = mat.transparency[2];

	intensity = mat.intensity;
	specularPower = mat.specularPower;
	name = mat.name;
	ambientTextureName = mat.ambientTextureName;
	diffuseTextureName = mat.diffuseTextureName;
	specularTextureName = mat.specularTextureName;
	bumpTextureName = mat.bumpTextureName;
	illum = mat.illum;
	bumpDepth = mat.bumpDepth;

	ambientTextureId = mat.ambientTextureId;
	diffuseTextureId = mat.diffuseTextureId;
	specularTextureId = mat.specularTextureId;
	bumpTextureId = mat.bumpTextureId;

 * The material class destructor.
Material::~Material() {
	if (ambientTextureId) glDeleteTextures(1, &ambientTextureId);
	if (diffuseTextureId) glDeleteTextures(1, &diffuseTextureId);
	if (specularTextureId) glDeleteTextures(1, &specularTextureId);
	if (bumpTextureId) glDeleteTextures(1, &bumpTextureId);

void Material::apply() const {

	// HACK !?!??
	glColor3f(1.0f, 1.0f, 1.0f);

	float average_transp = (transparency[0]+transparency[1]+transparency[2])/3.0f;
	ambientColor[3] = diffuseColor[3] = specularColor[3] = average_transp;
	glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambientColor);
	glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuseColor);
	glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specularColor);
	glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, specularPower);

	if (diffuseTextureId) {
		// maya always sets the diffuse color to black when a texture is applied.
		float color[4] = {0.8f, 0.8f, 0.8f, average_transp};
		glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color);

		// apply texture
		glBindTexture(GL_TEXTURE_2D, diffuseTextureId);

		// Enable texturing
	} else {

 * Loads a bitmap and converts it to a texture.
 * @return The new texture's ID.
void Material::loadDiffuseTexture() {
	diffuseTextureId = loadBitmap(diffuseTextureName.c_str());

End Material.cpp Material Library file: newmtl grass illum 4 Kd 0.00 0.00 0.00 Ka 0.00 0.00 0.00 Tf 1.00 1.00 1.00 map_Kd grass.bmp Ni 1.00 Ks 0.33 0.33 0.33 Ns 0.06 newmtl Brick_dark_grout illum 4 Kd 0.00 0.00 0.00 Ka 0.00 0.00 0.00 Tf 1.00 1.00 1.00 map_Kd Brick_dark_grout.bmp Ni 1.00 Ks 0.33 0.33 0.33 Ns 0.06 end Material Library file [edit: added source tags -SiCrane]

Share this post

Link to post
Share on other sites
You need to call glGenTextures. You can't just assume gl will allow you to use sequential texture IDs. If you replace your numTexture stuff with glGenTextures it should work OK, I think.

Share this post

Link to post
Share on other sites
Here is the log file:

CreateGLWindow called.
loadBitmap called: file name = grass.bmp
numTexture = 1
The file has been opened for reading.
is a texture ? = 1
loadBitmap called: file name = Brick_dark_grout.bmp
numTexture = 2
The file has been opened for reading.
is a texture ? = 1
Materials loaded - materials.size() = 2
Material 0:
name = grass
diffuseTextureName = grass.bmp
diffuseTextureId = 1
isTexture? = 0
Material 1:
name = Brick_dark_grout
diffuseTextureName = Brick_dark_grout.bmp
diffuseTextureId = 2
isTexture? = 1
glIsTexture? materials[0] = 0
glIsTexture? materials[1] = 1
glIsTexture? materials[0] = 0
glIsTexture? materials[1] = 1
. . .

Share this post

Link to post
Share on other sites

I don't think that that is the problem. If I change the code that loads the textures (init) to the following, all the textures work:
int InitGL(GLvoid)
glEnable(GL_TEXTURE_2D); // Enable Texture Mapping ( NEW )
glShadeModel(GL_SMOOTH); // Enable Smooth Shading
glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
glClearDepth(1.0f); // Depth Buffer Setup
glEnable(GL_DEPTH_TEST); // Enables Depth Testing
glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations

//// load material file
//if (!loadMaterialFile("squares2.mtl")) {
// logFile << "Materials NOT loaded." << endl;
//} else {
// logFile << "Materials loaded - materials.size() = " << materials.size() << endl;

Material mat1;
Material mat2;
materials[0].diffuseTextureId = loadBitmap("Grass.bmp");
materials[1].diffuseTextureId = loadBitmap("Brick_dark_grout.bmp");

// Print out the loaded materials props of interest
for (int i = 0; i < materials.size(); ++i) {
logFile << "Material " << i << ":" << endl;
logFile << " name = " << materials.name << endl;
logFile << " diffuseTextureName = " << materials.diffuseTextureName << endl;
logFile << " diffuseTextureId = " << materials.diffuseTextureId << endl;
int isTexture = glIsTexture(materials.diffuseTextureId);
logFile << " isTexture? = " << isTexture << endl;

// Check for errors

// Initialization completed OK
return TRUE;

The difference is that I am explicitly calling the loadBitmap method for each texture instead of loading the Material library. I don't know why the texture IDs would be valid when I call loadBitmap() directly and not when I call it from loadMaterialFile() ???

I tried to use glGenTextures() to give me valid texture IDs like so:

GLunit name[1];
glGenTexture(1, name);

But, with this, each call to loadBitmap() returns the same ID! The Texture doesn't really get bound to it for some reason.

Share this post

Link to post
Share on other sites
Well, I can't see exactly why it's happening, unless the vector is resizing itself after a single push_back, but I'm almost certain your problem is the destructor for Material. When you push_back an element into a vector the vector stores a copy, which means the following sequence of operations occurs:
Material::Material(); // your default constructed material object
Material::Material(Material const &); // the vector copy constructs your object into storage
Material::~Material(); // your material object leaves scope and is destructed

The last of those calls will result in you calling glDeleteTextures for any set textures ids. None of your texture ids should be set in your object, but if the vector has to further copy them then glDeleteTextures will be called and your texture object will be deleted. To solve this you'll probably need to store a reference count in your Material object or work with (smart) pointers to Materials or any other equivalent technique.

By the way, this code:
char buffer[512];
char* ptr = buffer;
while (*ptr == ' ' || *ptr == '\t') {
pmat->diffuseTextureName = ptr;

would be better implemented as:
std::getline(ifs, pmat->diffuseTextureName);
std::string::size_type whitespace = pmat->diffuseTextureName.find_first_not_of(" \t");
if (whitespace != std::string::npos)
pmat->diffuseTextureName = pmat->diffuseTextureName.substr(whitespace);


Share this post

Link to post
Share on other sites

You are right - I will have to re-write the Material class to handle this, or use a different container. Thanks for your help.

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement