Jump to content
  • Advertisement
Sign in to follow this  

OpenGL Upside down texture font in orthographic

This topic is 4498 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi everyone, I admit to not doing a thorough search, but what I have done only explains OpenGL screen coordinates in orthographic mode as having 0,0 in the lower left, even though 0,0 places my text top-left corner. This problem seems different. My texture fonts all get displayed fandiddlytastic in perspective mode, but when I switch to orthograpic mode to display the hud text, they're upside down! I actually changed the texture font creation code to render quad so the 3D text was not upside down, but now my 2D text went from being correct to being upside down :-( I can't figure it out. screenie: see top left (bit small, sorry) Code to build the textures hasn't changed dramatically, but as I say, I did change the quad render to fix the 3D text being upside down. Do you guys see anything obvious? Even if this has to do with texture coordinate calculations, I would expect to see the same issues in both perspective and orthographic modes. Anyway...
// Build a font of type and size specified
bool FTXFont::Build()
{
	// build texture if not already built
	if (!fontBuilt)
	{
		// check if file exists

		// load image and create texture and get it's OpenGL ID
		fontTexture = new FTexture(texFilename);
		//if (!fontTexture->GetIsLoaded() || !fontTexture->GetIsCreated())
		if (!fontTexture->GetIsCreated())
		{
			PrintDebug("[FTXFont] Texture not created for font %s. Exiting.\n",texFilename);
			return false;
		}
		// get texture specification
		textureSpec = fontTexture->GetTextureSpec();

		// if not provided, assume image is power of 2 square
		// and get number of characters horizontally and vertically
		// by taking the square root of the image dimentions
		if (numCharsV == 0)
		{
			numCharsV = (unsigned int)sqrt((float)image->GetWidth());
		}
		if (numCharsU == 0)
		{
			numCharsU = (unsigned int)sqrt((float)image->GetHeight());
		}

		// generate a series display list for characters of texture
		unsigned int totalChars = numCharsV*numCharsU;
		PrintDebug("[FTXFont] Font %s is %d chars wide x %d chars high\n",texFilename,numCharsV,numCharsU);
		PrintDebug("[FTXFont] Generating %d OpenGL display lists\n",totalChars);
		callList = glGenLists(totalChars);

		// bind our texture
		fontTexture->Bind();

		// traverse the image and generate the texture coordinates for each character and
		// build a quad and assign those coordinates for padded textures the texture
		// coordinates will be offset slightly hence the real (non-power of two) image width
		// is divided by the padded width (power of two)

		// get our increment based on how many characters we are seeing horizontally and vertically
		float incV = textureSpec.vRatio / (float)numCharsV;
		float incU = textureSpec.uRatio / (float)numCharsU;
		PrintDebug("[FTXFont] Font Specification:\n");
		PrintDebug("[FTXFont]   slots = %d   base = %d  range = %d ~ %d\n",totalChars,callList,callList,callList+totalChars-1);
		PrintDebug("[FTXFont]   incU  : (%d/%d) = %1.5f / %d chars high = %1.5f\n",image->GetOrigHeight(),image->GetHeight(),textureSpec.uRatio,numCharsU,incU);
		PrintDebug("[FTXFont]   incV  : (%d/%d) = %1.5f / %d chars wide = %1.5f\n",image->GetOrigWidth(),image->GetWidth(),textureSpec.vRatio,numCharsV,incV);

		// traverse texture calculating texture coordinates for each char
		// and build a quad in a display list for that character
		float v1,v2,u1,u2 = 0.0f;
		for (unsigned int u=0; u < numCharsU; u++)
		{
			for (unsigned int v=0; v < numCharsV; v++)
			{
				// grab our fraction of the texture relevant to the character and list
				//   cx works from low to high, whilst cy works down from high to low
				u1 = textureSpec.lULimit + (incU * (float)u);
				u2 = u1 + incU;
				v1 = textureSpec.lVLimit + (incV * (float)v);
				v2 = v1 + incV;

				// create the list for this texture portion (character)
				glNewList(callList+((u*numCharsV)+v), GL_COMPILE);

				// define our quad for the character
				glBegin(GL_QUADS);
					// bottom left
					glTexCoord2f(v1,u2);
						glVertex2f(0.0f,0.0f);
					// bottom right
					glTexCoord2f(v2,u2);
						glVertex2f(size,0.0f);
					// top right
					glTexCoord2f(v2,u1);
						glVertex2f(size,size);
					// top left
					glTexCoord2f(v1,u1);
						glVertex2f(0.0f,size);
				glEnd();

				// include spacing as part of character display
				// otherwise all characters appear ontop of one another
				glTranslated(spacing,0,0);

				// end our list
				glEndList();
			}
		}

		// indicate font built and return status
		fontBuilt = true;
		PrintDebug("[FTXFont] Built font for texture ID : %d\n",this->GetTexID());
	}

	// all ok
	return fontBuilt;
}

// Print function
void FTXFont::Print(const char *str, ...)
{

	// initialise variables
	va_list args;

	// check for empty string
	if (str == NULL)
		return;

	// format our string
	va_start(args, str);
		vsprintf_s(text, sizeof(text), str, args);
	va_end(args);

	// setup OpenGL environment for printing
//	EnableStates();

	// setup our alignments of entire text string for 3D
	if (!display2D)
	{
		hTOffset = 0.0f;	vTOffset = 0.0f;
		// if not default right align then assume left and set offset to size of text
		if (hTAlign != HRIGHT)
		{
			// offset left is length of current text multiplied by the size of the text
			hTOffset = (float)GetTextLength() * size;
			// if actually it's center and not left, then halve the offset to give us center align
			if (hTAlign == HCENTER)
				hTOffset *= 0.5f;
		}
		// if not default bottom align, then assume top and move up size of text
		if (vTAlign != VBOTTOM)
		{
			vTOffset = size;
			// if actually it's center then halve the offset to give us center align
			if (vTAlign == HCENTER)
				vTOffset *= 0.5f;
		}
	}

	// set desired color
	glColor4f(r, g, b, a);

	// print the text with any alignments
	glPushMatrix();

		// set the list base
		glListBase(callList-32);

		// move to desired location and call lists
		if (display2D)
		{
			// move to specified screen coordinates
			glTranslated((double)screenX,(double)screenY,0.0);
		} else {
			// move to 3D space coordinates (!= to 2D screen coordinates!)
			glTranslatef(xpos,ypos,zpos);

			// apply alignment offsets. use negative on the horizontal
			// because default alignment is right so we need to move left
			glTranslatef(-hTOffset,vTOffset,0.0f);
		}

		// scale text accordingly. Rendering in 3D space does not use screen pixels
		// as a unit of measurement, so we need to scale the text before displaying
		if (display2D)
		{
			//glScalef(1.0f,1.0f,1.0f);
		} else {
			//glScalef(size/1000.0f,size/1000.f,size/1000.0f);
			//glScalef(size,size,size);
		}

		// display the text
		glCallLists((GLsizei)strlen(text),GL_BYTE,text);

	glPopMatrix();

	// disable OpenGL states
//	DisableStates();
}







Cheers, and thanks for any hints. F451 [Edited by - Fahrenheit451 on January 26, 2006 11:07:31 PM]

Share this post


Link to post
Share on other sites
Advertisement
Hints are coming up for you: Don't use ortho mode to draw, keep your texts floating around in a 3D environment.

There're basically three types of fonts: font texture, font bitmap and font outline. Except font bitmap doesn't have the ability to scale and rotate, the two remaining types are theoretically free to draw in perspective mode. Have you considered drawing your text flying around a 3D model ?.

To draw your texts facing toward the user as normal, you need to translate them to an appropriate depth, as opposed to switching to ortho mode. Scaling and rotating the text are also a snap.

(font bitmap should also be rendered in perspective mode too, if you're curious, I'll post a sample).

Share this post


Link to post
Share on other sites
You are clearly setting up glOrtho to have 0,0 at the top-left, whereas in your perspective, 0,0 is at the bottom-left.

For consistency it might be easier to have them the same way around.

Alternatively, enable your text drawing routine to draw text both ways.

Opengl is not drawing the fonts upside down, it's drawing them the right way up, you're just looking at them upside down :)

Mark

Share this post


Link to post
Share on other sites
Quote:
Original post by Skeleton_V@T
Hints are coming up for you: Don't use ortho mode to draw, keep your texts floating around in a 3D environment.


You sure about that? Sure seems like ortho mode is the right mode for displaying an overlay like a HUD, GUI, or menu system, which is what I am trying to achieve with the FPS counter in the top left.

Quote:

There're basically three types of fonts: font texture, font bitmap and font outline. Except font bitmap doesn't have the ability to scale and rotate, the two remaining types are theoretically free to draw in perspective mode. Have you considered drawing your text flying around a 3D model ?.


Everything on the screen except the HUD components (top left & bottom right) are in perspective mode (I've just moved the camera close up for the screenshot). The perspective draws are fine (scaling, rotating, spinning, billboarding etc). I have a bitmap font class that I can use for the overlay, but I have some nice texture fonts I want to use on the overlay. I shouldn't have to give up ortho mode without first understanding more about why it's not working the way I want - which it appears is my setup of ortho mode.

F451

Share this post


Link to post
Share on other sites
Quote:
Original post by markr
You are clearly setting up glOrtho to have 0,0 at the top-left, whereas in your perspective, 0,0 is at the bottom-left.

For consistency it might be easier to have them the same way around.

Alternatively, enable your text drawing routine to draw text both ways.

Opengl is not drawing the fonts upside down, it's drawing them the right way up, you're just looking at them upside down :)

Mark


Ok. I will check into that. Thanks.

F451

Edit: You were correct markr, I had used a different Switch2D() routine recently that had the glOrtho command as (0,w,h,0,..) instead of (0,w,0,h). Now everything is consistent again and working! Thanks.

[Edited by - Fahrenheit451 on January 27, 2006 6:11:46 PM]

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By iArtist93
      I'm trying to implement PBR into my simple OpenGL renderer and trying to use multiple lighting passes, I'm using one pass per light for rendering as follow:
      1- First pass = depth
      2- Second pass = ambient
      3- [3 .. n] for all the lights in the scene.
      I'm using the blending function glBlendFunc(GL_ONE, GL_ONE) for passes [3..n], and i'm doing a Gamma Correction at the end of each fragment shader.
      But i still have a problem with the output image it just looks noisy specially when i'm using texture maps.
      Is there anything wrong with those steps or is there any improvement to this process?
    • By babaliaris
      Hello Everyone!
      I'm learning openGL, and currently i'm making a simple 2D game engine to test what I've learn so far.  In order to not say to much, i made a video in which i'm showing you the behavior of the rendering.
      Video: 
       
      What i was expecting to happen, was the player moving around. When i render only the player, he moves as i would expect. When i add a second Sprite object, instead of the Player, this new sprite object is moving and finally if i add a third Sprite object the third one is moving. And the weird think is that i'm transforming the Vertices of the Player so why the transformation is being applied somewhere else?
       
      Take a look at my code:
      Sprite Class
      (You mostly need to see the Constructor, the Render Method and the Move Method)
      #include "Brain.h" #include <glm/gtc/matrix_transform.hpp> #include <vector> struct Sprite::Implementation { //Position. struct pos pos; //Tag. std::string tag; //Texture. Texture *texture; //Model matrix. glm::mat4 model; //Vertex Array Object. VertexArray *vao; //Vertex Buffer Object. VertexBuffer *vbo; //Layout. VertexBufferLayout *layout; //Index Buffer Object. IndexBuffer *ibo; //Shader. Shader *program; //Brains. std::vector<Brain *> brains; //Deconstructor. ~Implementation(); }; Sprite::Sprite(std::string image_path, std::string tag, float x, float y) { //Create Pointer To Implementaion. m_Impl = new Implementation(); //Set the Position of the Sprite object. m_Impl->pos.x = x; m_Impl->pos.y = y; //Set the tag. m_Impl->tag = tag; //Create The Texture. m_Impl->texture = new Texture(image_path); //Initialize the model Matrix. m_Impl->model = glm::mat4(1.0f); //Get the Width and the Height of the Texture. int width = m_Impl->texture->GetWidth(); int height = m_Impl->texture->GetHeight(); //Create the Verticies. float verticies[] = { //Positions //Texture Coordinates. x, y, 0.0f, 0.0f, x + width, y, 1.0f, 0.0f, x + width, y + height, 1.0f, 1.0f, x, y + height, 0.0f, 1.0f }; //Create the Indicies. unsigned int indicies[] = { 0, 1, 2, 2, 3, 0 }; //Create Vertex Array. m_Impl->vao = new VertexArray(); //Create the Vertex Buffer. m_Impl->vbo = new VertexBuffer((void *)verticies, sizeof(verticies)); //Create The Layout. m_Impl->layout = new VertexBufferLayout(); m_Impl->layout->PushFloat(2); m_Impl->layout->PushFloat(2); m_Impl->vao->AddBuffer(m_Impl->vbo, m_Impl->layout); //Create the Index Buffer. m_Impl->ibo = new IndexBuffer(indicies, 6); //Create the new shader. m_Impl->program = new Shader("Shaders/SpriteShader.shader"); } //Render. void Sprite::Render(Window * window) { //Create the projection Matrix based on the current window width and height. glm::mat4 proj = glm::ortho(0.0f, (float)window->GetWidth(), 0.0f, (float)window->GetHeight(), -1.0f, 1.0f); //Set the MVP Uniform. m_Impl->program->setUniformMat4f("u_MVP", proj * m_Impl->model); //Run All The Brains (Scripts) of this game object (sprite). for (unsigned int i = 0; i < m_Impl->brains.size(); i++) { //Get Current Brain. Brain *brain = m_Impl->brains[i]; //Call the start function only once! if (brain->GetStart()) { brain->SetStart(false); brain->Start(); } //Call the update function every frame. brain->Update(); } //Render. window->GetRenderer()->Draw(m_Impl->vao, m_Impl->ibo, m_Impl->texture, m_Impl->program); } void Sprite::Move(float speed, bool left, bool right, bool up, bool down) { if (left) { m_Impl->pos.x -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(-speed, 0, 0)); } if (right) { m_Impl->pos.x += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(speed, 0, 0)); } if (up) { m_Impl->pos.y += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, speed, 0)); } if (down) { m_Impl->pos.y -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, -speed, 0)); } } void Sprite::AddBrain(Brain * brain) { //Push back the brain object. m_Impl->brains.push_back(brain); } pos *Sprite::GetPos() { return &m_Impl->pos; } std::string Sprite::GetTag() { return m_Impl->tag; } int Sprite::GetWidth() { return m_Impl->texture->GetWidth(); } int Sprite::GetHeight() { return m_Impl->texture->GetHeight(); } Sprite::~Sprite() { delete m_Impl; } //Implementation Deconstructor. Sprite::Implementation::~Implementation() { delete texture; delete vao; delete vbo; delete layout; delete ibo; delete program; }  
      Renderer Class
      #include "Renderer.h" #include "Error.h" Renderer::Renderer() { } Renderer::~Renderer() { } void Renderer::Draw(VertexArray * vao, IndexBuffer * ibo, Texture *texture, Shader * program) { vao->Bind(); ibo->Bind(); program->Bind(); if (texture != NULL) texture->Bind(); GLCall(glDrawElements(GL_TRIANGLES, ibo->GetCount(), GL_UNSIGNED_INT, NULL)); } void Renderer::Clear(float r, float g, float b) { GLCall(glClearColor(r, g, b, 1.0)); GLCall(glClear(GL_COLOR_BUFFER_BIT)); } void Renderer::Update(GLFWwindow *window) { /* Swap front and back buffers */ glfwSwapBuffers(window); /* Poll for and process events */ glfwPollEvents(); }  
      Shader Code
      #shader vertex #version 330 core layout(location = 0) in vec4 aPos; layout(location = 1) in vec2 aTexCoord; out vec2 t_TexCoord; uniform mat4 u_MVP; void main() { gl_Position = u_MVP * aPos; t_TexCoord = aTexCoord; } #shader fragment #version 330 core out vec4 aColor; in vec2 t_TexCoord; uniform sampler2D u_Texture; void main() { aColor = texture(u_Texture, t_TexCoord); } Also i'm pretty sure that every time i'm hitting the up, down, left and right arrows on the keyboard, i'm changing the model Matrix of the Player and not the others.
       
      Window Class:
      #include "Window.h" #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Error.h" #include "Renderer.h" #include "Scene.h" #include "Input.h" //Global Variables. int screen_width, screen_height; //On Window Resize. void OnWindowResize(GLFWwindow *window, int width, int height); //Implementation Structure. struct Window::Implementation { //GLFW Window. GLFWwindow *GLFW_window; //Renderer. Renderer *renderer; //Delta Time. double delta_time; //Frames Per Second. int fps; //Scene. Scene *scnene; //Input. Input *input; //Deconstructor. ~Implementation(); }; //Window Constructor. Window::Window(std::string title, int width, int height) { //Initializing width and height. screen_width = width; screen_height = height; //Create Pointer To Implementation. m_Impl = new Implementation(); //Try initializing GLFW. if (!glfwInit()) { std::cout << "GLFW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); exit(-1); } //Setting up OpenGL Version 3.3 Core Profile. glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); /* Create a windowed mode window and its OpenGL context */ m_Impl->GLFW_window = glfwCreateWindow(width, height, title.c_str(), NULL, NULL); if (!m_Impl->GLFW_window) { std::cout << "GLFW could not create a window!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } /* Make the window's context current */ glfwMakeContextCurrent(m_Impl->GLFW_window); //Initialize GLEW. if(glewInit() != GLEW_OK) { std::cout << "GLEW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } //Enabling Blending. GLCall(glEnable(GL_BLEND)); GLCall(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); //Setting the ViewPort. GLCall(glViewport(0, 0, width, height)); //**********Initializing Implementation**********// m_Impl->renderer = new Renderer(); m_Impl->delta_time = 0.0; m_Impl->fps = 0; m_Impl->input = new Input(this); //**********Initializing Implementation**********// //Set Frame Buffer Size Callback. glfwSetFramebufferSizeCallback(m_Impl->GLFW_window, OnWindowResize); } //Window Deconstructor. Window::~Window() { delete m_Impl; } //Window Main Loop. void Window::MainLoop() { //Time Variables. double start_time = 0, end_time = 0, old_time = 0, total_time = 0; //Frames Counter. int frames = 0; /* Loop until the user closes the window */ while (!glfwWindowShouldClose(m_Impl->GLFW_window)) { old_time = start_time; //Total time of previous frame. start_time = glfwGetTime(); //Current frame start time. //Calculate the Delta Time. m_Impl->delta_time = start_time - old_time; //Get Frames Per Second. if (total_time >= 1) { m_Impl->fps = frames; total_time = 0; frames = 0; } //Clearing The Screen. m_Impl->renderer->Clear(0, 0, 0); //Render The Scene. if (m_Impl->scnene != NULL) m_Impl->scnene->Render(this); //Updating the Screen. m_Impl->renderer->Update(m_Impl->GLFW_window); //Increasing frames counter. frames++; //End Time. end_time = glfwGetTime(); //Total time after the frame completed. total_time += end_time - start_time; } //Terminate GLFW. glfwTerminate(); } //Load Scene. void Window::LoadScene(Scene * scene) { //Set the scene. m_Impl->scnene = scene; } //Get Delta Time. double Window::GetDeltaTime() { return m_Impl->delta_time; } //Get FPS. int Window::GetFPS() { return m_Impl->fps; } //Get Width. int Window::GetWidth() { return screen_width; } //Get Height. int Window::GetHeight() { return screen_height; } //Get Input. Input * Window::GetInput() { return m_Impl->input; } Renderer * Window::GetRenderer() { return m_Impl->renderer; } GLFWwindow * Window::GetGLFWindow() { return m_Impl->GLFW_window; } //Implementation Deconstructor. Window::Implementation::~Implementation() { delete renderer; delete input; } //OnWindowResize void OnWindowResize(GLFWwindow *window, int width, int height) { screen_width = width; screen_height = height; //Updating the ViewPort. GLCall(glViewport(0, 0, width, height)); }  
      Brain Class
      #include "Brain.h" #include "Sprite.h" #include "Window.h" struct Brain::Implementation { //Just A Flag. bool started; //Window Pointer. Window *window; //Sprite Pointer. Sprite *sprite; }; Brain::Brain(Window *window, Sprite *sprite) { //Create Pointer To Implementation. m_Impl = new Implementation(); //Initialize Implementation. m_Impl->started = true; m_Impl->window = window; m_Impl->sprite = sprite; } Brain::~Brain() { //Delete Pointer To Implementation. delete m_Impl; } void Brain::Start() { } void Brain::Update() { } Window * Brain::GetWindow() { return m_Impl->window; } Sprite * Brain::GetSprite() { return m_Impl->sprite; } bool Brain::GetStart() { return m_Impl->started; } void Brain::SetStart(bool value) { m_Impl->started = value; } Script Class (Its a Brain Subclass!!!)
      #include "Script.h" Script::Script(Window *window, Sprite *sprite) : Brain(window, sprite) { } Script::~Script() { } void Script::Start() { std::cout << "Game Started!" << std::endl; } void Script::Update() { Input *input = this->GetWindow()->GetInput(); Sprite *sp = this->GetSprite(); //Move this sprite. this->GetSprite()->Move(200 * this->GetWindow()->GetDeltaTime(), input->GetKeyDown("left"), input->GetKeyDown("right"), input->GetKeyDown("up"), input->GetKeyDown("down")); std::cout << sp->GetTag().c_str() << ".x = " << sp->GetPos()->x << ", " << sp->GetTag().c_str() << ".y = " << sp->GetPos()->y << std::endl; }  
      Main:
      #include "SpaceShooterEngine.h" #include "Script.h" int main() { Window w("title", 600,600); Scene *scene = new Scene(); Sprite *player = new Sprite("Resources/Images/player.png", "Player", 100,100); Sprite *other = new Sprite("Resources/Images/cherno.png", "Other", 400, 100); Sprite *other2 = new Sprite("Resources/Images/cherno.png", "Other", 300, 400); Brain *brain = new Script(&w, player); player->AddBrain(brain); scene->AddSprite(player); scene->AddSprite(other); scene->AddSprite(other2); w.LoadScene(scene); w.MainLoop(); return 0; }  
       
      I literally can't find what is wrong. If you need more code, ask me to post it. I will also attach all the source files.
      Brain.cpp
      Error.cpp
      IndexBuffer.cpp
      Input.cpp
      Renderer.cpp
      Scene.cpp
      Shader.cpp
      Sprite.cpp
      Texture.cpp
      VertexArray.cpp
      VertexBuffer.cpp
      VertexBufferLayout.cpp
      Window.cpp
      Brain.h
      Error.h
      IndexBuffer.h
      Input.h
      Renderer.h
      Scene.h
      Shader.h
      SpaceShooterEngine.h
      Sprite.h
      Texture.h
      VertexArray.h
      VertexBuffer.h
      VertexBufferLayout.h
      Window.h
    • By Cristian Decu
      Hello fellow programmers,
      For a couple of days now i've decided to build my own planet renderer just to see how floating point precision issues
      can be tackled. As you probably imagine, i've quickly faced FPP issues when trying to render absurdly large planets.
       
      I have used the classical quadtree LOD approach;
      I've generated my grids with 33 vertices, (x: -1 to 1, y: -1 to 1, z = 0).
      Each grid is managed by a TerrainNode class that, depending on the side it represents (top, bottom, left right, front, back),
      creates a special rotation-translation matrix that moves and rotates the grid away from the origin so that when i finally
      normalize all the vertices on my vertex shader i can get a perfect sphere.
      T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, 1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(180.0), glm::dvec3(1.0, 0.0, 0.0)); sides[0] = new TerrainNode(1.0, radius, T * R, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_FRONT)); T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, -1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(0.0), glm::dvec3(1.0, 0.0, 0.0)); sides[1] = new TerrainNode(1.0, radius, R * T, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_BACK)); // So on and so forth for the rest of the sides As you can see, for the front side grid, i rotate it 180 degrees to make it face the camera and push it towards the eye;
      the back side is handled almost the same way only that i don't need to rotate it but simply push it away from the eye.
      The same technique is applied for the rest of the faces (obviously, with the proper rotations / translations).
      The matrix that result from the multiplication of R and T (in that particular order) is send to my vertex shader as `r_Grid'.
      // spherify vec3 V = normalize((r_Grid * vec4(r_Vertex, 1.0)).xyz); gl_Position = r_ModelViewProjection * vec4(V, 1.0); The `r_ModelViewProjection' matrix is generated on the CPU in this manner.
      // No the most efficient way, but it works. glm::dmat4 Camera::getMatrix() { // Create the view matrix // Roll, Yaw and Pitch are all quaternions. glm::dmat4 View = glm::toMat4(Roll) * glm::toMat4(Pitch) * glm::toMat4(Yaw); // The model matrix is generated by translating in the oposite direction of the camera. glm::dmat4 Model = glm::translate(glm::dmat4(1.0), -Position); // Projection = glm::perspective(fovY, aspect, zNear, zFar); // zNear = 0.1, zFar = 1.0995116e12 return Projection * View * Model; } I managed to get rid of z-fighting by using a technique called Logarithmic Depth Buffer described in this article; it works amazingly well, no z-fighting at all, at least not visible.
      Each frame i'm rendering each node by sending the generated matrices this way.
      // set the r_ModelViewProjection uniform // Sneak in the mRadiusMatrix which is a matrix that contains the radius of my planet. Shader::setUniform(0, Camera::getInstance()->getMatrix() * mRadiusMatrix); // set the r_Grid matrix uniform i created earlier. Shader::setUniform(1, r_Grid); grid->render(); My planet's radius is around 6400000.0 units, absurdly large, but that's what i really want to achieve;
      Everything works well, the node's split and merge as you'd expect, however whenever i get close to the surface
      of the planet the rounding errors start to kick in giving me that lovely stairs effect.
      I've read that if i could render each grid relative to the camera i could get better precision on the surface, effectively
      getting rid of those rounding errors.
       
      My question is how can i achieve this relative to camera rendering in my scenario here?
      I know that i have to do most of the work on the CPU with double, and that's exactly what i'm doing.
      I only use double on the CPU side where i also do most of the matrix multiplications.
      As you can see from my vertex shader i only do the usual r_ModelViewProjection * (some vertex coords).
       
      Thank you for your suggestions!
       
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!