Jump to content
  • Advertisement
Sign in to follow this  

OpenGL Vertex Declarations in OpenGL and DirectX ?

This topic is 4449 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi, What is the OpenGL echivalent for DirectX9 vertex declarations ? I know that OpenGL can use vertex arrays that are echivalent for vertexbuffers. But how to set vertex declarations, and can it use multiple streams (vertex arrays) ? I want to know this for use with CG effects or vertex programs available for OpenGL. Can anyone give a small code example (not necessarly functional, just curios about the functions used). I am also interested in a platform independent approach to meshes and effects. Can vertex shaders and vertex declarations be wraped in some engine classes to use with both OpenGL and DirectX effects (eventualy CG) ? Thanks

Share this post


Link to post
Share on other sites
Advertisement
Moved to OpenGL

For the first part of your question you're more likely to get a better answer from the OpenGL experts - they're the guys who know the API best [wink]

AS for an API/platform independent method, yes it's probably possible - but you can't really take it any further until you know what form both API's can use (or require). From there you can either decide whether you want to take a subset approach (basic functionality that both API's can handle) or some higher-level approach that involves work-arounds/emulation for parts of the respective API's that don't natively handle what you want. For example, if you really want streams, but OpenGL can't do that you could (presumably) emulate it by creating your own Input Assembler - not necessarily efficient, but it'd probably work.

hth
Jack

Share this post


Link to post
Share on other sites
JollyJeffers,

i can't follow your explanation; so, plesae tell me, what do you mean exactly by the term "subset approach" ?

(do you mean splitting up the rendering-work into more/simple subsets by switching only the vertex-dec.format ?)

Share this post


Link to post
Share on other sites
What it comes down to in OpenGL is that you get to define vertex declarations yourself, and then you get to write the rendering backend code that translates a vertex declaration into BindBuffer and Pointer calls.

It's fairly simple to do. You define an array of structures that have all of the information about the vertex declaration -- what its usage is, what type it is, offset and stream index, etc. Then you loop through that array, calling BindBuffer and pointer as necessary.

I basically have a header that defines stuff for a declaration:

#ifndef _GEOMETRY_H
#define _GEOMETRY_H

#include "../HoverEngine.h"

#include "RendererTypes.h"
#include "VertexBuffer.h"
#include "IndexBuffer.h"

#include <vector>

//type of element, i.e. what it specifies
enum VertexElementType
{
VET_XYZ,
VET_NORMAL,
VET_DIFFUSE,
VET_SPECULAR,
VET_TEXCOORD,
};

//'format' of element, basically the data type
//it's recommended that you avoid the INT64 types, as well as long double
enum VertexElementFormat
{
VEF_SIGNED_BYTE,
VEF_UNSIGNED_BYTE,

VEF_SIGNED_SHORT,
VEF_UNSIGNED_SHORT,

VEF_UNSIGNED_INT,
VEF_SIGNED_INT,

VEF_UNSIGNED_INT64,
VEF_SIGNED_INT64,

VEF_FLOAT,
VEF_DOUBLE,
VEF_LONG_DOUBLE,
};

//FVF quick-system
#define FVF_XYZ 0x00000001
#define FVF_NORMAL 0x00000002
#define FVF_DIFFUSE 0x00000004
#define FVF_SPECULAR 0x00000008

#define FVF_TEXTURE0 0x00010000
#define FVF_TEXTURE1 0x00020000
#define FVF_TEXTURE2 0x00040000
#define FVF_TEXTURE3 0x00080000
#define FVF_TEXTURE(X) (0x00010000 << (X))

//specifies a single part of a vertex, e.g. one position, or one texcoord, etc.
struct VertexElement
{
unsigned int Stream;
unsigned int Count;
std::size_t Offset; //offset in the structure
VertexElementFormat Format;
VertexElementType Type;

//normal ctor
VertexElement() : Stream( 0 ), Count( 0 ), Format( VEF_FLOAT ),
Type( VET_XYZ ), Offset( 0 )
{ }

//inline ctor for laziness
VertexElement( unsigned int vStream, unsigned int vCount, std::size_t vOffset,
VertexElementFormat vFormat, VertexElementType vType )
: Stream( vStream ), Count( vCount ), Format( vFormat), Type( vType ),
Offset( vOffset )
{ }

static std::size_t FormatSize( VertexElementFormat vef );

//Compute the size of this element in bytes
std::size_t SizeBytes() { return FormatSize( Format ) * Count; }
};


//specifies a complete vertex, basically just a list of elements
struct VertexDeclaration
{
typedef std::vector<VertexElement> ElementList;
typedef ElementList::iterator Iterator;

ElementList Elements;

VertexDeclaration()
{
Elements.reserve( 4 );
}

static VertexDeclaration CreateFromFVF( unsigned int FVF );
};

//in D3D, streams will correspond to real streams
//in OGL, the streams will be somewhat virtualised, but effectively the same
#define MAX_VERTEX_STREAMS 8
//holds all the data for a single stream
struct StreamSource
{
VertexBuffer* Source;
std::size_t Offset;
std::size_t Stride;

StreamSource() : Source( NULL ), Offset( 0 ), Stride( 0 )
{ }
};


//holds everything geometric about an object
class Geometry
{
protected:
VertexDeclaration m_Decl;

RenderMode m_Mode;
std::size_t m_PrimitiveCount;
std::size_t m_IndexCount;

StreamSource m_Streams[MAX_VERTEX_STREAMS];
IndexBuffer* m_Indices; //if IB is NULL, use non-indexed primitive
std::size_t m_IndexOffset;

std::size_t m_FirstVertex;
std::size_t m_NumVertices;

public:
Geometry();
virtual ~Geometry();

//Sets the rendering mode and primitive count for this geom
void SetRenderMode( RenderMode Mode, std::size_t IndexCount );

//Sets the vertex buffer for the specified stream
void SetStreamSource( unsigned int Stream, VertexBuffer* Source, std::size_t Offset, std::size_t Stride );
//Sets the indices for this geom (NULL for no indexing -- Offset is used for VB)
void SetIndices( IndexBuffer* Indices, std::size_t Offset );
//Sets the range of vertex used by the indices (ignored if not using indices)
void SetRange( std::size_t First, std::size_t Count );

//used to access the vertex declaration
VertexDeclaration& Decl() { return m_Decl; }
//access the streams
StreamSource* Stream( unsigned int Idx ) { assert( Idx < MAX_VERTEX_STREAMS ); return &m_Streams[Idx]; }
//access the indices
IndexBuffer* Indices() { return m_Indices; }
//index buffer offset
std::size_t IndexOffset() const { return m_IndexOffset; }
//Primitive count
std::size_t PrimitiveCount() const { return m_PrimitiveCount; }
std::size_t IndexCount() const { return m_IndexCount; }
//render mode for this geom
RenderMode Mode() const { return m_Mode; }
//Get the index range
void GetRange( std::size_t& First, std::size_t& Count ) const { First = m_FirstVertex; Count = m_NumVertices; }

};

#endif

And then the function to parse this into OpenGL goes like this:
void OGLRenderer::BeginRender( Geometry* Geom )
{
if( m_RenderBegun )
return;
if( Geom == NULL )
return;

//keeps track of tex coord sets in use
unsigned int TexCoord = 0;

//first, get the Geom's declaration and set stuff up
VertexDeclaration::Iterator it = Geom->Decl().Elements.begin();
while( it != Geom->Decl().Elements.end() )
{
if( m_CurrentVB != Geom->Stream( it->Stream )->Source )
{
m_CurrentVB = down_cast<OGLVertexBuffer*>( Geom->Stream( it->Stream )->Source );
if( m_CurrentVB != NULL )
{
m_CurrentVB->Bind();
}
else if( GLEE_ARB_vertex_buffer_object )
{
glBindBufferARB( GL_ELEMENT_ARRAY_BUFFER_ARB, 0 );
}
}

//initialize the pointers for this element
GLsizei Stride = (GLsizei) Geom->Stream( it->Stream )->Stride;
GLsizei StreamOffset = (GLsizei) Geom->Stream( it->Stream)->Offset;
switch( it->Type )
{
case VET_XYZ:
glEnableClientState( GL_VERTEX_ARRAY );
glVertexPointer( it->Count, TranslateVertexFormat( it->Format ), Stride, m_CurrentVB->GetPointer() + it->Offset + StreamOffset );
break;
case VET_NORMAL:
glEnableClientState( GL_NORMAL_ARRAY );
glNormalPointer( TranslateVertexFormat( it->Format ), Stride, m_CurrentVB->GetPointer() + it->Offset + StreamOffset );
break;
case VET_DIFFUSE:
glEnableClientState( GL_COLOR_ARRAY );
glColorPointer( it->Count, TranslateVertexFormat( it->Format ), Stride, m_CurrentVB->GetPointer() + it->Offset + StreamOffset );
break;
case VET_SPECULAR:
glEnableClientState( GL_SECONDARY_COLOR_ARRAY );
glSecondaryColorPointer( it->Count, TranslateVertexFormat( it->Format ), Stride, m_CurrentVB->GetPointer() + it->Offset + StreamOffset );
break;
case VET_TEXCOORD:
glClientActiveTexture( GL_TEXTURE0 + TexCoord );
glEnableClientState( GL_TEXTURE_COORD_ARRAY );
glTexCoordPointer( it->Count, TranslateVertexFormat( it->Format ), Stride, m_CurrentVB->GetPointer() + it->Offset + StreamOffset );
++TexCoord;
break;
}

++it;
}

//set up indices if we have any
if( m_Indices != Geom->Indices() )
{
m_Indices = down_cast<OGLIndexBuffer*>( Geom->Indices() );
if( m_Indices != NULL )
{
m_Indices->Bind();
}
else if( GLEE_ARB_vertex_buffer_object )
{
glBindBufferARB( GL_ELEMENT_ARRAY_BUFFER_ARB, NULL );
}
}

m_RenderBegun = true;
m_CurGeom = Geom;
}

(Note: This appears to be an older version of my source. The newer version has some modifications that allow arbitrary VertexElementTypes, which is useful for shader stuff.)

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By iArtist93
      I'm trying to implement PBR into my simple OpenGL renderer and trying to use multiple lighting passes, I'm using one pass per light for rendering as follow:
      1- First pass = depth
      2- Second pass = ambient
      3- [3 .. n] for all the lights in the scene.
      I'm using the blending function glBlendFunc(GL_ONE, GL_ONE) for passes [3..n], and i'm doing a Gamma Correction at the end of each fragment shader.
      But i still have a problem with the output image it just looks noisy specially when i'm using texture maps.
      Is there anything wrong with those steps or is there any improvement to this process?
    • By babaliaris
      Hello Everyone!
      I'm learning openGL, and currently i'm making a simple 2D game engine to test what I've learn so far.  In order to not say to much, i made a video in which i'm showing you the behavior of the rendering.
      Video: 
       
      What i was expecting to happen, was the player moving around. When i render only the player, he moves as i would expect. When i add a second Sprite object, instead of the Player, this new sprite object is moving and finally if i add a third Sprite object the third one is moving. And the weird think is that i'm transforming the Vertices of the Player so why the transformation is being applied somewhere else?
       
      Take a look at my code:
      Sprite Class
      (You mostly need to see the Constructor, the Render Method and the Move Method)
      #include "Brain.h" #include <glm/gtc/matrix_transform.hpp> #include <vector> struct Sprite::Implementation { //Position. struct pos pos; //Tag. std::string tag; //Texture. Texture *texture; //Model matrix. glm::mat4 model; //Vertex Array Object. VertexArray *vao; //Vertex Buffer Object. VertexBuffer *vbo; //Layout. VertexBufferLayout *layout; //Index Buffer Object. IndexBuffer *ibo; //Shader. Shader *program; //Brains. std::vector<Brain *> brains; //Deconstructor. ~Implementation(); }; Sprite::Sprite(std::string image_path, std::string tag, float x, float y) { //Create Pointer To Implementaion. m_Impl = new Implementation(); //Set the Position of the Sprite object. m_Impl->pos.x = x; m_Impl->pos.y = y; //Set the tag. m_Impl->tag = tag; //Create The Texture. m_Impl->texture = new Texture(image_path); //Initialize the model Matrix. m_Impl->model = glm::mat4(1.0f); //Get the Width and the Height of the Texture. int width = m_Impl->texture->GetWidth(); int height = m_Impl->texture->GetHeight(); //Create the Verticies. float verticies[] = { //Positions //Texture Coordinates. x, y, 0.0f, 0.0f, x + width, y, 1.0f, 0.0f, x + width, y + height, 1.0f, 1.0f, x, y + height, 0.0f, 1.0f }; //Create the Indicies. unsigned int indicies[] = { 0, 1, 2, 2, 3, 0 }; //Create Vertex Array. m_Impl->vao = new VertexArray(); //Create the Vertex Buffer. m_Impl->vbo = new VertexBuffer((void *)verticies, sizeof(verticies)); //Create The Layout. m_Impl->layout = new VertexBufferLayout(); m_Impl->layout->PushFloat(2); m_Impl->layout->PushFloat(2); m_Impl->vao->AddBuffer(m_Impl->vbo, m_Impl->layout); //Create the Index Buffer. m_Impl->ibo = new IndexBuffer(indicies, 6); //Create the new shader. m_Impl->program = new Shader("Shaders/SpriteShader.shader"); } //Render. void Sprite::Render(Window * window) { //Create the projection Matrix based on the current window width and height. glm::mat4 proj = glm::ortho(0.0f, (float)window->GetWidth(), 0.0f, (float)window->GetHeight(), -1.0f, 1.0f); //Set the MVP Uniform. m_Impl->program->setUniformMat4f("u_MVP", proj * m_Impl->model); //Run All The Brains (Scripts) of this game object (sprite). for (unsigned int i = 0; i < m_Impl->brains.size(); i++) { //Get Current Brain. Brain *brain = m_Impl->brains[i]; //Call the start function only once! if (brain->GetStart()) { brain->SetStart(false); brain->Start(); } //Call the update function every frame. brain->Update(); } //Render. window->GetRenderer()->Draw(m_Impl->vao, m_Impl->ibo, m_Impl->texture, m_Impl->program); } void Sprite::Move(float speed, bool left, bool right, bool up, bool down) { if (left) { m_Impl->pos.x -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(-speed, 0, 0)); } if (right) { m_Impl->pos.x += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(speed, 0, 0)); } if (up) { m_Impl->pos.y += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, speed, 0)); } if (down) { m_Impl->pos.y -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, -speed, 0)); } } void Sprite::AddBrain(Brain * brain) { //Push back the brain object. m_Impl->brains.push_back(brain); } pos *Sprite::GetPos() { return &m_Impl->pos; } std::string Sprite::GetTag() { return m_Impl->tag; } int Sprite::GetWidth() { return m_Impl->texture->GetWidth(); } int Sprite::GetHeight() { return m_Impl->texture->GetHeight(); } Sprite::~Sprite() { delete m_Impl; } //Implementation Deconstructor. Sprite::Implementation::~Implementation() { delete texture; delete vao; delete vbo; delete layout; delete ibo; delete program; }  
      Renderer Class
      #include "Renderer.h" #include "Error.h" Renderer::Renderer() { } Renderer::~Renderer() { } void Renderer::Draw(VertexArray * vao, IndexBuffer * ibo, Texture *texture, Shader * program) { vao->Bind(); ibo->Bind(); program->Bind(); if (texture != NULL) texture->Bind(); GLCall(glDrawElements(GL_TRIANGLES, ibo->GetCount(), GL_UNSIGNED_INT, NULL)); } void Renderer::Clear(float r, float g, float b) { GLCall(glClearColor(r, g, b, 1.0)); GLCall(glClear(GL_COLOR_BUFFER_BIT)); } void Renderer::Update(GLFWwindow *window) { /* Swap front and back buffers */ glfwSwapBuffers(window); /* Poll for and process events */ glfwPollEvents(); }  
      Shader Code
      #shader vertex #version 330 core layout(location = 0) in vec4 aPos; layout(location = 1) in vec2 aTexCoord; out vec2 t_TexCoord; uniform mat4 u_MVP; void main() { gl_Position = u_MVP * aPos; t_TexCoord = aTexCoord; } #shader fragment #version 330 core out vec4 aColor; in vec2 t_TexCoord; uniform sampler2D u_Texture; void main() { aColor = texture(u_Texture, t_TexCoord); } Also i'm pretty sure that every time i'm hitting the up, down, left and right arrows on the keyboard, i'm changing the model Matrix of the Player and not the others.
       
      Window Class:
      #include "Window.h" #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Error.h" #include "Renderer.h" #include "Scene.h" #include "Input.h" //Global Variables. int screen_width, screen_height; //On Window Resize. void OnWindowResize(GLFWwindow *window, int width, int height); //Implementation Structure. struct Window::Implementation { //GLFW Window. GLFWwindow *GLFW_window; //Renderer. Renderer *renderer; //Delta Time. double delta_time; //Frames Per Second. int fps; //Scene. Scene *scnene; //Input. Input *input; //Deconstructor. ~Implementation(); }; //Window Constructor. Window::Window(std::string title, int width, int height) { //Initializing width and height. screen_width = width; screen_height = height; //Create Pointer To Implementation. m_Impl = new Implementation(); //Try initializing GLFW. if (!glfwInit()) { std::cout << "GLFW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); exit(-1); } //Setting up OpenGL Version 3.3 Core Profile. glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); /* Create a windowed mode window and its OpenGL context */ m_Impl->GLFW_window = glfwCreateWindow(width, height, title.c_str(), NULL, NULL); if (!m_Impl->GLFW_window) { std::cout << "GLFW could not create a window!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } /* Make the window's context current */ glfwMakeContextCurrent(m_Impl->GLFW_window); //Initialize GLEW. if(glewInit() != GLEW_OK) { std::cout << "GLEW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } //Enabling Blending. GLCall(glEnable(GL_BLEND)); GLCall(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); //Setting the ViewPort. GLCall(glViewport(0, 0, width, height)); //**********Initializing Implementation**********// m_Impl->renderer = new Renderer(); m_Impl->delta_time = 0.0; m_Impl->fps = 0; m_Impl->input = new Input(this); //**********Initializing Implementation**********// //Set Frame Buffer Size Callback. glfwSetFramebufferSizeCallback(m_Impl->GLFW_window, OnWindowResize); } //Window Deconstructor. Window::~Window() { delete m_Impl; } //Window Main Loop. void Window::MainLoop() { //Time Variables. double start_time = 0, end_time = 0, old_time = 0, total_time = 0; //Frames Counter. int frames = 0; /* Loop until the user closes the window */ while (!glfwWindowShouldClose(m_Impl->GLFW_window)) { old_time = start_time; //Total time of previous frame. start_time = glfwGetTime(); //Current frame start time. //Calculate the Delta Time. m_Impl->delta_time = start_time - old_time; //Get Frames Per Second. if (total_time >= 1) { m_Impl->fps = frames; total_time = 0; frames = 0; } //Clearing The Screen. m_Impl->renderer->Clear(0, 0, 0); //Render The Scene. if (m_Impl->scnene != NULL) m_Impl->scnene->Render(this); //Updating the Screen. m_Impl->renderer->Update(m_Impl->GLFW_window); //Increasing frames counter. frames++; //End Time. end_time = glfwGetTime(); //Total time after the frame completed. total_time += end_time - start_time; } //Terminate GLFW. glfwTerminate(); } //Load Scene. void Window::LoadScene(Scene * scene) { //Set the scene. m_Impl->scnene = scene; } //Get Delta Time. double Window::GetDeltaTime() { return m_Impl->delta_time; } //Get FPS. int Window::GetFPS() { return m_Impl->fps; } //Get Width. int Window::GetWidth() { return screen_width; } //Get Height. int Window::GetHeight() { return screen_height; } //Get Input. Input * Window::GetInput() { return m_Impl->input; } Renderer * Window::GetRenderer() { return m_Impl->renderer; } GLFWwindow * Window::GetGLFWindow() { return m_Impl->GLFW_window; } //Implementation Deconstructor. Window::Implementation::~Implementation() { delete renderer; delete input; } //OnWindowResize void OnWindowResize(GLFWwindow *window, int width, int height) { screen_width = width; screen_height = height; //Updating the ViewPort. GLCall(glViewport(0, 0, width, height)); }  
      Brain Class
      #include "Brain.h" #include "Sprite.h" #include "Window.h" struct Brain::Implementation { //Just A Flag. bool started; //Window Pointer. Window *window; //Sprite Pointer. Sprite *sprite; }; Brain::Brain(Window *window, Sprite *sprite) { //Create Pointer To Implementation. m_Impl = new Implementation(); //Initialize Implementation. m_Impl->started = true; m_Impl->window = window; m_Impl->sprite = sprite; } Brain::~Brain() { //Delete Pointer To Implementation. delete m_Impl; } void Brain::Start() { } void Brain::Update() { } Window * Brain::GetWindow() { return m_Impl->window; } Sprite * Brain::GetSprite() { return m_Impl->sprite; } bool Brain::GetStart() { return m_Impl->started; } void Brain::SetStart(bool value) { m_Impl->started = value; } Script Class (Its a Brain Subclass!!!)
      #include "Script.h" Script::Script(Window *window, Sprite *sprite) : Brain(window, sprite) { } Script::~Script() { } void Script::Start() { std::cout << "Game Started!" << std::endl; } void Script::Update() { Input *input = this->GetWindow()->GetInput(); Sprite *sp = this->GetSprite(); //Move this sprite. this->GetSprite()->Move(200 * this->GetWindow()->GetDeltaTime(), input->GetKeyDown("left"), input->GetKeyDown("right"), input->GetKeyDown("up"), input->GetKeyDown("down")); std::cout << sp->GetTag().c_str() << ".x = " << sp->GetPos()->x << ", " << sp->GetTag().c_str() << ".y = " << sp->GetPos()->y << std::endl; }  
      Main:
      #include "SpaceShooterEngine.h" #include "Script.h" int main() { Window w("title", 600,600); Scene *scene = new Scene(); Sprite *player = new Sprite("Resources/Images/player.png", "Player", 100,100); Sprite *other = new Sprite("Resources/Images/cherno.png", "Other", 400, 100); Sprite *other2 = new Sprite("Resources/Images/cherno.png", "Other", 300, 400); Brain *brain = new Script(&w, player); player->AddBrain(brain); scene->AddSprite(player); scene->AddSprite(other); scene->AddSprite(other2); w.LoadScene(scene); w.MainLoop(); return 0; }  
       
      I literally can't find what is wrong. If you need more code, ask me to post it. I will also attach all the source files.
      Brain.cpp
      Error.cpp
      IndexBuffer.cpp
      Input.cpp
      Renderer.cpp
      Scene.cpp
      Shader.cpp
      Sprite.cpp
      Texture.cpp
      VertexArray.cpp
      VertexBuffer.cpp
      VertexBufferLayout.cpp
      Window.cpp
      Brain.h
      Error.h
      IndexBuffer.h
      Input.h
      Renderer.h
      Scene.h
      Shader.h
      SpaceShooterEngine.h
      Sprite.h
      Texture.h
      VertexArray.h
      VertexBuffer.h
      VertexBufferLayout.h
      Window.h
    • By Cristian Decu
      Hello fellow programmers,
      For a couple of days now i've decided to build my own planet renderer just to see how floating point precision issues
      can be tackled. As you probably imagine, i've quickly faced FPP issues when trying to render absurdly large planets.
       
      I have used the classical quadtree LOD approach;
      I've generated my grids with 33 vertices, (x: -1 to 1, y: -1 to 1, z = 0).
      Each grid is managed by a TerrainNode class that, depending on the side it represents (top, bottom, left right, front, back),
      creates a special rotation-translation matrix that moves and rotates the grid away from the origin so that when i finally
      normalize all the vertices on my vertex shader i can get a perfect sphere.
      T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, 1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(180.0), glm::dvec3(1.0, 0.0, 0.0)); sides[0] = new TerrainNode(1.0, radius, T * R, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_FRONT)); T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, -1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(0.0), glm::dvec3(1.0, 0.0, 0.0)); sides[1] = new TerrainNode(1.0, radius, R * T, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_BACK)); // So on and so forth for the rest of the sides As you can see, for the front side grid, i rotate it 180 degrees to make it face the camera and push it towards the eye;
      the back side is handled almost the same way only that i don't need to rotate it but simply push it away from the eye.
      The same technique is applied for the rest of the faces (obviously, with the proper rotations / translations).
      The matrix that result from the multiplication of R and T (in that particular order) is send to my vertex shader as `r_Grid'.
      // spherify vec3 V = normalize((r_Grid * vec4(r_Vertex, 1.0)).xyz); gl_Position = r_ModelViewProjection * vec4(V, 1.0); The `r_ModelViewProjection' matrix is generated on the CPU in this manner.
      // No the most efficient way, but it works. glm::dmat4 Camera::getMatrix() { // Create the view matrix // Roll, Yaw and Pitch are all quaternions. glm::dmat4 View = glm::toMat4(Roll) * glm::toMat4(Pitch) * glm::toMat4(Yaw); // The model matrix is generated by translating in the oposite direction of the camera. glm::dmat4 Model = glm::translate(glm::dmat4(1.0), -Position); // Projection = glm::perspective(fovY, aspect, zNear, zFar); // zNear = 0.1, zFar = 1.0995116e12 return Projection * View * Model; } I managed to get rid of z-fighting by using a technique called Logarithmic Depth Buffer described in this article; it works amazingly well, no z-fighting at all, at least not visible.
      Each frame i'm rendering each node by sending the generated matrices this way.
      // set the r_ModelViewProjection uniform // Sneak in the mRadiusMatrix which is a matrix that contains the radius of my planet. Shader::setUniform(0, Camera::getInstance()->getMatrix() * mRadiusMatrix); // set the r_Grid matrix uniform i created earlier. Shader::setUniform(1, r_Grid); grid->render(); My planet's radius is around 6400000.0 units, absurdly large, but that's what i really want to achieve;
      Everything works well, the node's split and merge as you'd expect, however whenever i get close to the surface
      of the planet the rounding errors start to kick in giving me that lovely stairs effect.
      I've read that if i could render each grid relative to the camera i could get better precision on the surface, effectively
      getting rid of those rounding errors.
       
      My question is how can i achieve this relative to camera rendering in my scenario here?
      I know that i have to do most of the work on the CPU with double, and that's exactly what i'm doing.
      I only use double on the CPU side where i also do most of the matrix multiplications.
      As you can see from my vertex shader i only do the usual r_ModelViewProjection * (some vertex coords).
       
      Thank you for your suggestions!
       
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!