# Integrating Gravitational Acceleration

This topic is 4860 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

## Recommended Posts

[help]Here's what I'm trying to do- Given: Xo: the initial distance from the source of the gravitation Vo: the initial radial velocity Is there any way to use the following equation (the universal law of gravitation)
          M
A(X) = G ---
X2
to solve for A(t), V(t), X(t)? When I tried, I started from
          M
A(t) = G ---
X(t)2
and then I got stuck on the next step. I started that with
V(t) = Vo plus the indefinite integral of A(t)dt
and
X(t) = Xo plus the indefinite integral of V(t)dt
Is there any way I can continue? When I plugged in A(t) into the V(t) equation and attempted the integration, I made no progress. Can this be done exactly or will I be forced to use some sort of approximation technique [sad] [crying] [bawling] ?

##### Share on other sites
A(t) = G M / X(t)^2
V(t) = Vo + A(t)*t
X(t) = Xo + V(t)*t + 1/2 A(t)*t^2

But, you likely need to do A(t-1) inorder to get answers from that, since it depends on X(t).
This is no different from any other acceleration. You just have a changing force.

##### Share on other sites
Your equation can be rewritten like this:
       d2y    y2 ---  =  gM       dx2
This is a second-order non-linear differential equation. It can't be solved by simple integration, but there are standard methods of solving certain second-order non-linear differential equations. I'll leave it at that for now. Good luck.

• ### Game Developer Survey

We are looking for qualified game developers to participate in a 10-minute online survey. Qualified participants will be offered a \$15 incentive for your time and insights. Click here to start!

• 16
• 12
• 9
• 9
• 25