Sign in to follow this  
Chris Graphics

OpenGL Bump Reflection Mapping

Recommended Posts

Hi, my plan is to use the shader source code out of the CG toolkit user manual for bump reflection mapping to render a sphere in OpenGL. The goal is to achieve the same effect as shown in the user manual. Has anyone already tried to use the same code unchanged? The reflections I'm experiencing at the moment are quite wrong, and I'm assuming that this has to do with a wrong eye vector. Perhaps I understood the shader source wrongly, thus I'm asking some questions about that. First, here is the complete source code from the toolkit: VERTEX SHADER: -------------------------------------------------------------------------------------------- struct a2v { float4 Position : POSITION; // in object space float2 TexCoord : TEXCOORD0; float3 T : TEXCOORD1; // in object space float3 B : TEXCOORD2; // in object space float3 N : TEXCOORD3; // in object space }; struct v2f { float4 Position : POSITION; // in projection space float4 TexCoord : TEXCOORD0; // first row of the 3x3 transform // from tangent to cube space float4 TangentToCubeSpace0 : TEXCOORD1; // second row of the 3x3 transform // from tangent to cube space float4 TangentToCubeSpace1 : TEXCOORD2; // third row of the 3x3 transform // from tangent to cube space float4 TangentToCubeSpace2 : TEXCOORD3; }; v2f main(a2v IN, uniform float4x4 WorldViewProj, uniform float3x4 ObjToCubeSpace, uniform float3 EyePosition, // in cube space uniform float BumpScale) { v2f OUT; // pass texture coordinates for // fetching the normal map OUT.TexCoord.xy = IN.TexCoord.xy; // compute 3x3 transform from tangent to object space float3x3 objToTangentSpace; // first rows are the tangent and binormal // scaled by the bump scale objToTangentSpace[0] = BumpScale * IN.T; objToTangentSpace[1] = BumpScale * IN.B; objToTangentSpace[2] = IN.N; // compute the 3x3 transform from // tangent space to cube space: // TangentToCubeSpace // = object2cube * tangent2object // = object2cube * transpose(objToTangentSpace) // (since the inverse of a rotation is its transpose) // // So a row of TangentToCubeSpace is the transform by // objToTangentSpace of the corresponding row of // ObjToCubeSpace OUT.TangentToCubeSpace0.xyz = mul(objToTangentSpace, ObjToCubeSpace[0].xyz); OUT.TangentToCubeSpace1.xyz = mul(objToTangentSpace, ObjToCubeSpace[1].xyz); OUT.TangentToCubeSpace2.xyz = mul(objToTangentSpace, ObjToCubeSpace[2].xyz); // compute the eye vector // (going from eye to shaded point) in cube space float3 eyeVector = mul(ObjToCubeSpace, IN.Position) - EyePosition; OUT.TangentToCubeSpace0.w = eyeVector.x; OUT.TangentToCubeSpace1.w = eyeVector.y; OUT.TangentToCubeSpace2.w = eyeVector.z; // transform position to projection space OUT.Position = mul(WorldViewProj, IN.Position); return OUT; } -------------------------------------------------------------------------------------------- PIXEL SHADER: -------------------------------------------------------------------------------------------- struct v2f { float4 Position : POSITION; //in projection space float4 TexCoord : TEXCOORD0; // first row of the 3x3 transform // from tangent to cube space float4 TangentToCubeSpace0 : TEXCOORD1; // second row of the 3x3 transform // from tangent to cube space float4 TangentToCubeSpace1 : TEXCOORD2; // third row of the 3x3 transform // from tangent to cube space float4 TangentToCubeSpace2 : TEXCOORD3; }; float4 main(v2f IN, uniform sampler2D NormalMap, uniform samplerCUBE EnvironmentMap, uniform float3 EyeVector) : COLOR { // fetch the bump normal from the normal map float4 normal = tex2D(NormalMap, IN.TexCoord.xy); // transform the bump normal into cube space // then use the transformed normal and eye vector // to compute the reflection vector that is // used to fetch the cube map return texCUBE_reflect_eye_dp3x3(EnvironmentMap, IN.TangentToCubeSpace2.xyz, IN.TangentToCubeSpace0, IN.TangentToCubeSpace1, normal, EyeVector); } Well, now my questions: 1.) In the VS, there is the input "uniform float3 EyePosition, // in cubespace", and AIK cube space is mostly the same as world space. What I have to do to setup the eye vector so this will be cube space? Will be (0/0/1) enough? 2.) Furthermore, there is the input "uniform float3x4 ObjToCubeSpace". How do I get a transformation matrix from object space to world space and/or cube space in OpenGL? What I have to hand over to the shader? AIK, such a matrix does not exist, and I don't know how to calc it. 3.) At the end of the VS: // compute the eye vector // (going from eye to shaded point) in cube space float3 eyeVector = mul(ObjToCubeSpace, IN.Position) - EyePosition; OUT.TangentToCubeSpace0.w = eyeVector.x; OUT.TangentToCubeSpace1.w = eyeVector.y; OUT.TangentToCubeSpace2.w = eyeVector.z; The eye vector is stored and handed over to the PS. In the PS, the eye vector is specified as uniform, and due to that handed over once by the application. So what is right now? And does that mean that one has to use the per vertex eye vector? 4.) At the end of the PS, there is the mysterious method return texCUBE_reflect_eye_dp3x3(EnvironmentMap, IN.TangentToCubeSpace2.xyz, IN.TangentToCubeSpace0, IN.TangentToCubeSpace1, normal, EyeVector); Does anyone know what exactly I have to do here? Maybe this is my main problem. Of course, the parameters and the name give some hints about that. But I'm not really sure how to realize it. Here is my solution: float4x4 T; T[0] = TangentToCubeSpace2; T[1] = TangentToCubeSpace0; T[2] = TangentToCubeSpace1; float3 N = mul(T, normal); N = normalize(N); Then I'm fetching the eye vector which was previously stored in the TangentToCubeSpace matrix: float3 EyeVector; EyeVector.x = TangentToCubeSpace0.w; EyeVector.y = TangentToCubeSpace1.w; EyeVector.z = TangentToCubeSpace2.w; float3 R = reflect(EyeVector, N); color = rexCUBE(environmentMap, R); I hope some of you can help me. It would be great if the effect looks like the sphere shown in the manual. Thx, Chris

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Announcements

  • Forum Statistics

    • Total Topics
      628330
    • Total Posts
      2982112
  • Similar Content

    • By DejayHextrix
      Hi, New here. 
      I need some help. My fiance and I like to play this mobile game online that goes by real time. Her and I are always working but when we have free time we like to play this game. We don't always got time throughout the day to Queue Buildings, troops, Upgrades....etc.... 
      I was told to look into DLL Injection and OpenGL/DirectX Hooking. Is this true? Is this what I need to learn? 
      How do I read the Android files, or modify the files, or get the in-game tags/variables for the game I want? 
      Any assistance on this would be most appreciated. I been everywhere and seems no one knows or is to lazy to help me out. It would be nice to have assistance for once. I don't know what I need to learn. 
      So links of topics I need to learn within the comment section would be SOOOOO.....Helpful. Anything to just get me started. 
      Thanks, 
      Dejay Hextrix 
    • By mellinoe
      Hi all,
      First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource!
      Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots:
      The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios.
      Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
    • By aejt
      I recently started getting into graphics programming (2nd try, first try was many years ago) and I'm working on a 3d rendering engine which I hope to be able to make a 3D game with sooner or later. I have plenty of C++ experience, but not a lot when it comes to graphics, and while it's definitely going much better this time, I'm having trouble figuring out how assets are usually handled by engines.
      I'm not having trouble with handling the GPU resources, but more so with how the resources should be defined and used in the system (materials, models, etc).
      This is my plan now, I've implemented most of it except for the XML parts and factories and those are the ones I'm not sure of at all:
      I have these classes:
      For GPU resources:
      Geometry: holds and manages everything needed to render a geometry: VAO, VBO, EBO. Texture: holds and manages a texture which is loaded into the GPU. Shader: holds and manages a shader which is loaded into the GPU. For assets relying on GPU resources:
      Material: holds a shader resource, multiple texture resources, as well as uniform settings. Mesh: holds a geometry and a material. Model: holds multiple meshes, possibly in a tree structure to more easily support skinning later on? For handling GPU resources:
      ResourceCache<T>: T can be any resource loaded into the GPU. It owns these resources and only hands out handles to them on request (currently string identifiers are used when requesting handles, but all resources are stored in a vector and each handle only contains resource's index in that vector) Resource<T>: The handles given out from ResourceCache. The handles are reference counted and to get the underlying resource you simply deference like with pointers (*handle).  
      And my plan is to define everything into these XML documents to abstract away files:
      Resources.xml for ref-counted GPU resources (geometry, shaders, textures) Resources are assigned names/ids and resource files, and possibly some attributes (what vertex attributes does this geometry have? what vertex attributes does this shader expect? what uniforms does this shader use? and so on) Are reference counted using ResourceCache<T> Assets.xml for assets using the GPU resources (materials, meshes, models) Assets are not reference counted, but they hold handles to ref-counted resources. References the resources defined in Resources.xml by names/ids. The XMLs are loaded into some structure in memory which is then used for loading the resources/assets using factory classes:
      Factory classes for resources:
      For example, a texture factory could contain the texture definitions from the XML containing data about textures in the game, as well as a cache containing all loaded textures. This means it has mappings from each name/id to a file and when asked to load a texture with a name/id, it can look up its path and use a "BinaryLoader" to either load the file and create the resource directly, or asynchronously load the file's data into a queue which then can be read from later to create the resources synchronously in the GL context. These factories only return handles.
      Factory classes for assets:
      Much like for resources, these classes contain the definitions for the assets they can load. For example, with the definition the MaterialFactory will know which shader, textures and possibly uniform a certain material has, and with the help of TextureFactory and ShaderFactory, it can retrieve handles to the resources it needs (Shader + Textures), setup itself from XML data (uniform values), and return a created instance of requested material. These factories return actual instances, not handles (but the instances contain handles).
       
       
      Is this a good or commonly used approach? Is this going to bite me in the ass later on? Are there other more preferable approaches? Is this outside of the scope of a 3d renderer and should be on the engine side? I'd love to receive and kind of advice or suggestions!
      Thanks!
    • By nedondev
      I 'm learning how to create game by using opengl with c/c++ coding, so here is my fist game. In video description also have game contain in Dropbox. May be I will make it better in future.
      Thanks.
    • By Abecederia
      So I've recently started learning some GLSL and now I'm toying with a POM shader. I'm trying to optimize it and notice that it starts having issues at high texture sizes, especially with self-shadowing.
      Now I know POM is expensive either way, but would pulling the heightmap out of the normalmap alpha channel and in it's own 8bit texture make doing all those dozens of texture fetches more cheap? Or is everything in the cache aligned to 32bit anyway? I haven't implemented texture compression yet, I think that would help? But regardless, should there be a performance boost from decoupling the heightmap? I could also keep it in a lower resolution than the normalmap if that would improve performance.
      Any help is much appreciated, please keep in mind I'm somewhat of a newbie. Thanks!
  • Popular Now