• 12
• 12
• 9
• 10
• 13
• ### Similar Content

• By elect
Hi,
ok, so, we are having problems with our current mirror reflection implementation.
At the moment we are doing it very simple, so for the i-th frame, we calculate the reflection vectors given the viewPoint and some predefined points on the mirror surface (position and normal).
Then, using the least squared algorithm, we find the point that has the minimum distance from all these reflections vectors. This is going to be our virtual viewPoint (with the right orientation).
After that, we render offscreen to a texture by setting the OpenGL camera on the virtual viewPoint.
And finally we use the rendered texture on the mirror surface.
So far this has always been fine, but now we are having some more strong constraints on accuracy.
What are our best options given that:
- we have a dynamic scene, the mirror and parts of the scene can change continuously from frame to frame
- we have about 3k points (with normals) per mirror, calculated offline using some cad program (such as Catia)
- all the mirror are always perfectly spherical (with different radius vertically and horizontally) and they are always convex
- a scene can have up to 10 mirror
- it should be fast enough also for vr (Htc Vive) on fastest gpus (only desktops)

Looking around, some papers talk about calculating some caustic surface derivation offline, but I don't know if this suits my case
Also, another paper, used some acceleration structures to detect the intersection between the reflection vectors and the scene, and then adjust the corresponding texture coordinate. This looks the most accurate but also very heavy from a computational point of view.

Other than that, I couldn't find anything updated/exhaustive around, can you help me?

• Hello all,
I am currently working on a game engine for use with my game development that I would like to be as flexible as possible.  As such the exact requirements for how things should work can't be nailed down to a specific implementation and I am looking for, at least now, a default good average case scenario design.
Here is what I have implemented:
Deferred rendering using OpenGL Arbitrary number of lights and shadow mapping Each rendered object, as defined by a set of geometry, textures, animation data, and a model matrix is rendered with its own draw call Skeletal animations implemented on the GPU.   Model matrix transformation implemented on the GPU Frustum and octree culling for optimization Here are my questions and concerns:
Doing the skeletal animation on the GPU, currently, requires doing the skinning for each object multiple times per frame: once for the initial geometry rendering and once for the shadow map rendering for each light for which it is not culled.  This seems very inefficient.  Is there a way to do skeletal animation on the GPU only once across these render calls? Without doing the model matrix transformation on the CPU, I fail to see how I can easily batch objects with the same textures and shaders in a single draw call without passing a ton of matrix data to the GPU (an array of model matrices then an index for each vertex into that array for transformation purposes?) If I do the matrix transformations on the CPU, It seems I can't really do the skinning on the GPU as the pre-transformed vertexes will wreck havoc with the calculations, so this seems not viable unless I am missing something Overall it seems like simplest solution is to just do all of the vertex manipulation on the CPU and pass the pre-transformed data to the GPU, using vertex shaders that do basically nothing.  This doesn't seem the most efficient use of the graphics hardware, but could potentially reduce the number of draw calls needed.

Really, I am looking for some advice on how to proceed with this, how something like this is typically handled.  Are the multiple draw calls and skinning calculations not a huge deal?  I would LIKE to save as much of the CPU's time per frame so it can be tasked with other things, as to keep CPU resources open to the implementation of the engine.  However, that becomes a moot point if the GPU becomes a bottleneck.

• Hello!
I would like to introduce Diligent Engine, a project that I've been recently working on. Diligent Engine is a light-weight cross-platform abstraction layer between the application and the platform-specific graphics API. Its main goal is to take advantages of the next-generation APIs such as Direct3D12 and Vulkan, but at the same time provide support for older platforms via Direct3D11, OpenGL and OpenGLES. Diligent Engine exposes common front-end for all supported platforms and provides interoperability with underlying native API. Shader source code converter allows shaders authored in HLSL to be translated to GLSL and used on all platforms. Diligent Engine supports integration with Unity and is designed to be used as a graphics subsystem in a standalone game engine, Unity native plugin or any other 3D application. It is distributed under Apache 2.0 license and is free to use. Full source code is available for download on GitHub.
Features:
True cross-platform Exact same client code for all supported platforms and rendering backends No #if defined(_WIN32) ... #elif defined(LINUX) ... #elif defined(ANDROID) ... No #if defined(D3D11) ... #elif defined(D3D12) ... #elif defined(OPENGL) ... Exact same HLSL shaders run on all platforms and all backends Modular design Components are clearly separated logically and physically and can be used as needed Only take what you need for your project (do not want to keep samples and tutorials in your codebase? Simply remove Samples submodule. Only need core functionality? Use only Core submodule) No 15000 lines-of-code files Clear object-based interface No global states Key graphics features: Automatic shader resource binding designed to leverage the next-generation rendering APIs Multithreaded command buffer generation 50,000 draw calls at 300 fps with D3D12 backend Descriptor, memory and resource state management Modern c++ features to make code fast and reliable The following platforms and low-level APIs are currently supported:
Windows Desktop: Direct3D11, Direct3D12, OpenGL Universal Windows: Direct3D11, Direct3D12 Linux: OpenGL Android: OpenGLES MacOS: OpenGL iOS: OpenGLES API Basics
Initialization
The engine can perform initialization of the API or attach to already existing D3D11/D3D12 device or OpenGL/GLES context. For instance, the following code shows how the engine can be initialized in D3D12 mode:
#include "RenderDeviceFactoryD3D12.h" using namespace Diligent; // ...  GetEngineFactoryD3D12Type GetEngineFactoryD3D12 = nullptr; // Load the dll and import GetEngineFactoryD3D12() function LoadGraphicsEngineD3D12(GetEngineFactoryD3D12); auto *pFactoryD3D11 = GetEngineFactoryD3D12(); EngineD3D12Attribs EngD3D12Attribs; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[0] = 1024; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[1] = 32; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[2] = 16; EngD3D12Attribs.CPUDescriptorHeapAllocationSize[3] = 16; EngD3D12Attribs.NumCommandsToFlushCmdList = 64; RefCntAutoPtr<IRenderDevice> pRenderDevice; RefCntAutoPtr<IDeviceContext> pImmediateContext; SwapChainDesc SwapChainDesc; RefCntAutoPtr<ISwapChain> pSwapChain; pFactoryD3D11->CreateDeviceAndContextsD3D12( EngD3D12Attribs, &pRenderDevice, &pImmediateContext, 0 ); pFactoryD3D11->CreateSwapChainD3D12( pRenderDevice, pImmediateContext, SwapChainDesc, hWnd, &pSwapChain ); Creating Resources
Device resources are created by the render device. The two main resource types are buffers, which represent linear memory, and textures, which use memory layouts optimized for fast filtering. To create a buffer, you need to populate BufferDesc structure and call IRenderDevice::CreateBuffer(). The following code creates a uniform (constant) buffer:
BufferDesc BuffDesc; BufferDesc.Name = "Uniform buffer"; BuffDesc.BindFlags = BIND_UNIFORM_BUFFER; BuffDesc.Usage = USAGE_DYNAMIC; BuffDesc.uiSizeInBytes = sizeof(ShaderConstants); BuffDesc.CPUAccessFlags = CPU_ACCESS_WRITE; m_pDevice->CreateBuffer( BuffDesc, BufferData(), &m_pConstantBuffer ); Similar, to create a texture, populate TextureDesc structure and call IRenderDevice::CreateTexture() as in the following example:
TextureDesc TexDesc; TexDesc.Name = "My texture 2D"; TexDesc.Type = TEXTURE_TYPE_2D; TexDesc.Width = 1024; TexDesc.Height = 1024; TexDesc.Format = TEX_FORMAT_RGBA8_UNORM; TexDesc.Usage = USAGE_DEFAULT; TexDesc.BindFlags = BIND_SHADER_RESOURCE | BIND_RENDER_TARGET | BIND_UNORDERED_ACCESS; TexDesc.Name = "Sample 2D Texture"; m_pRenderDevice->CreateTexture( TexDesc, TextureData(), &m_pTestTex ); Initializing Pipeline State
Diligent Engine follows Direct3D12 style to configure the graphics/compute pipeline. One big Pipelines State Object (PSO) encompasses all required states (all shader stages, input layout description, depth stencil, rasterizer and blend state descriptions etc.)
To create a shader, populate ShaderCreationAttribs structure. An important member is ShaderCreationAttribs::SourceLanguage. The following are valid values for this member:
SHADER_SOURCE_LANGUAGE_DEFAULT  - The shader source format matches the underlying graphics API: HLSL for D3D11 or D3D12 mode, and GLSL for OpenGL and OpenGLES modes. SHADER_SOURCE_LANGUAGE_HLSL  - The shader source is in HLSL. For OpenGL and OpenGLES modes, the source code will be converted to GLSL. See shader converter for details. SHADER_SOURCE_LANGUAGE_GLSL  - The shader source is in GLSL. There is currently no GLSL to HLSL converter. To allow grouping of resources based on the frequency of expected change, Diligent Engine introduces classification of shader variables:
Static variables (SHADER_VARIABLE_TYPE_STATIC) are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. Mutable variables (SHADER_VARIABLE_TYPE_MUTABLE) define resources that are expected to change on a per-material frequency. Examples may include diffuse textures, normal maps etc. Dynamic variables (SHADER_VARIABLE_TYPE_DYNAMIC) are expected to change frequently and randomly. This post describes the resource binding model in Diligent Engine.
The following is an example of shader initialization:
To create a pipeline state object, define instance of PipelineStateDesc structure. The structure defines the pipeline specifics such as if the pipeline is a compute pipeline, number and format of render targets as well as depth-stencil format:
// This is a graphics pipeline PSODesc.IsComputePipeline = false; PSODesc.GraphicsPipeline.NumRenderTargets = 1; PSODesc.GraphicsPipeline.RTVFormats[0] = TEX_FORMAT_RGBA8_UNORM_SRGB; PSODesc.GraphicsPipeline.DSVFormat = TEX_FORMAT_D32_FLOAT; The structure also defines depth-stencil, rasterizer, blend state, input layout and other parameters. For instance, rasterizer state can be defined as in the code snippet below:
// Init rasterizer state RasterizerStateDesc &RasterizerDesc = PSODesc.GraphicsPipeline.RasterizerDesc; RasterizerDesc.FillMode = FILL_MODE_SOLID; RasterizerDesc.CullMode = CULL_MODE_NONE; RasterizerDesc.FrontCounterClockwise = True; RasterizerDesc.ScissorEnable = True; //RSDesc.MultisampleEnable = false; // do not allow msaa (fonts would be degraded) RasterizerDesc.AntialiasedLineEnable = False; When all fields are populated, call IRenderDevice::CreatePipelineState() to create the PSO:
Shader resource binding in Diligent Engine is based on grouping variables in 3 different groups (static, mutable and dynamic). Static variables are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. They are bound directly to the shader object:

m_pPSO->CreateShaderResourceBinding(&m_pSRB); Dynamic and mutable resources are then bound through SRB object:
m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "tex2DDiffuse")->Set(pDiffuseTexSRV); m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "cbRandomAttribs")->Set(pRandomAttrsCB); The difference between mutable and dynamic resources is that mutable ones can only be set once for every instance of a shader resource binding. Dynamic resources can be set multiple times. It is important to properly set the variable type as this may affect performance. Static variables are generally most efficient, followed by mutable. Dynamic variables are most expensive from performance point of view. This post explains shader resource binding in more details.
Setting the Pipeline State and Invoking Draw Command
Before any draw command can be invoked, all required vertex and index buffers as well as the pipeline state should be bound to the device context:
// Clear render target const float zero[4] = {0, 0, 0, 0}; m_pContext->ClearRenderTarget(nullptr, zero); // Set vertex and index buffers IBuffer *buffer[] = {m_pVertexBuffer}; Uint32 offsets[] = {0}; Uint32 strides[] = {sizeof(MyVertex)}; m_pContext->SetVertexBuffers(0, 1, buffer, strides, offsets, SET_VERTEX_BUFFERS_FLAG_RESET); m_pContext->SetIndexBuffer(m_pIndexBuffer, 0); m_pContext->SetPipelineState(m_pPSO); Also, all shader resources must be committed to the device context:
m_pContext->CommitShaderResources(m_pSRB, COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES); When all required states and resources are bound, IDeviceContext::Draw() can be used to execute draw command or IDeviceContext::DispatchCompute() can be used to execute compute command. Note that for a draw command, graphics pipeline must be bound, and for dispatch command, compute pipeline must be bound. Draw() takes DrawAttribs structure as an argument. The structure members define all attributes required to perform the command (primitive topology, number of vertices or indices, if draw call is indexed or not, if draw call is instanced or not, if draw call is indirect or not, etc.). For example:
DrawAttribs attrs; attrs.IsIndexed = true; attrs.IndexType = VT_UINT16; attrs.NumIndices = 36; attrs.Topology = PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; pContext->Draw(attrs); Tutorials and Samples
The GitHub repository contains a number of tutorials and sample applications that demonstrate the API usage.

AntTweakBar sample demonstrates how to use AntTweakBar library to create simple user interface.

Atmospheric scattering sample is a more advanced example. It demonstrates how Diligent Engine can be used to implement various rendering tasks: loading textures from files, using complex shaders, rendering to textures, using compute shaders and unordered access views, etc.

The repository includes Asteroids performance benchmark based on this demo developed by Intel. It renders 50,000 unique textured asteroids and lets compare performance of D3D11 and D3D12 implementations. Every asteroid is a combination of one of 1000 unique meshes and one of 10 unique textures.

Integration with Unity
Diligent Engine supports integration with Unity through Unity low-level native plugin interface. The engine relies on Native API Interoperability to attach to the graphics API initialized by Unity. After Diligent Engine device and context are created, they can be used us usual to create resources and issue rendering commands. GhostCubePlugin shows an example how Diligent Engine can be used to render a ghost cube only visible as a reflection in a mirror.

• By Yxjmir
I'm trying to load data from a .gltf file into a struct to use to load a .bin file. I don't think there is a problem with how the vertex positions are loaded, but with the indices. This is what I get when drawing with glDrawArrays(GL_LINES, ...):

Also, using glDrawElements gives a similar result. Since it looks like its drawing triangles using the wrong vertices for each face, I'm assuming it needs an index buffer/element buffer. (I'm not sure why there is a line going through part of it, it doesn't look like it belongs to a side, re-exported it without texture coordinates checked, and its not there)
I'm using jsoncpp to load the GLTF file, its format is based on JSON. Here is the gltf struct I'm using, and how I parse the file:
glBindVertexArray(g_pGame->m_VAO);
glDrawElements(GL_LINES, g_pGame->m_indices.size(), GL_UNSIGNED_BYTE, (void*)0); // Only shows with GL_UNSIGNED_BYTE
glDrawArrays(GL_LINES, 0, g_pGame->m_vertexCount);
So, I'm asking what type should I use for the indices? it doesn't seem to be unsigned short, which is what I selected with the Khronos Group Exporter for blender. Also, am I reading part or all of the .bin file wrong?
Test.gltf
Test.bin

• That means how do I use base DirectX or OpenGL api's to make a physics based destruction simulation?
Will it be just smart rendering or something else is required?

# OpenGL distributing opengl applications with VS.NET 2005 Express

This topic is 4052 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

## Recommended Posts

##### Share on other sites
The problem isn't related to OpenGL but rather to VS 2005 (Express) (So it would be better placed in the general programming section).

VS 2005 Express uses a newer version of CRT that is likely not to be present on windows computers without visual studio (I don't know whether they are part of SP2 or something).

I had the same problem but redistributing the following files (in bin directory, where the exe is located) worked:
msvcm80.dll
msvcp80.dll
msvcr80.dll
Microsoft.VC80.CRT.manifest

(Win XP and VS 2003 are likely to use the xxx71 versions that those xxx80 ones)

Also give it a try and google for your error message: "[ERROR MESSAGE]".

##### Share on other sites
those files didn't work. I'm going to post my code here. It's only an opengl framework. I don't have it on this computer but when I do if somebody manages to compile it and run it on a stock windows install I'd be interested to hear about it since I've never managed to get any vs.net app to run outside vs.net.

##### Share on other sites
Install http://www.microsoft.com/windows/virtualpc/downloads/sp1.mspx and install xp (trial period) on the virtual machine this will give you a standard xp install and help prepare your application for distribution.

##### Share on other sites
Here is my code

these are the libraries I've linked in:
opengl32.lib
glu32.lib
user32.lib
gdi32.lib
winspool.lib
comdlg32.lib
shell32.lib
ole32.lib
oleaut32.lib
uuid.lib
kernel32.lib

I haven't played with the default compiler settings otherwise, and have never managed to get this to run under XP without vs.net 2005 express installed.
I've been stuck with this problem for a week. Thanks for any advice/solutions.

this is the WIN32.cpp file

/*
This file should only ever be included in the project if it is being compiled under windows. It keep all the win32 code in one place
and calls cross platform code from it to run the game main loop.
All this file does is create an opengl context and starts up the window.
Its couter part is LINUX.cpp.
*/

#include "Application.h"
#include <windows.h>
#include <gl\gl.h>

HGLRC hRC=NULL;
HDC hDC=NULL;
HWND hWnd=NULL;
HINSTANCE hInstance;

/*This is a global variable for this file only.*/
Application *app;

//this variable helps this win32 code keep track of fullscreeness
bool g_fullscreen;

//Window message handler (OS messages). Should not do any important message handling, should just forward to cross-platform message handler.
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);
//Application window clean up
GLvoid KillGLWindow(GLvoid);
//Creates the window
bool CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag);

//Entery point for the program. Creates the window, deletes the window and loop the appliation object inside.
int WINAPI WinMain( HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)
{
const unsigned int WIDTH = 800;
const unsigned int HEIGHT = 600;
MSG msg;
bool done=false;
/* if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
{
g_fullscreen=false;
} else
g_fullscreen = true;*/

g_fullscreen = false;
if (!CreateGLWindow("OpenGL Framework",WIDTH,HEIGHT,32,g_fullscreen))
{
return 0;
}
app = new Application();
app->initGL();
app->ResizeGL(WIDTH, HEIGHT);
while(!done)
{
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))
{
if (msg.message==WM_QUIT)
{
done=true;
}
else
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
} else {
SwapBuffers(hDC);
}
}
delete app;
KillGLWindow();
return (int)(msg.wParam);
}

//The windows message pump, should pass all data to a cross platform handler.
LRESULT CALLBACK WndProc( HWND hWnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)
{
switch (uMsg)
{

case WM_SYSCOMMAND: //Prevent the computer from starting the screensaver or going into power save mode.
{
switch (wParam)
{
case SC_SCREENSAVE:
case SC_MONITORPOWER:
return 0;
}
break;
}

case WM_CLOSE:
{
PostQuitMessage(0);
return 0;
}

case WM_KEYDOWN:
{
//can handle this later.
return 0;
}

case WM_KEYUP:
{
//can handle this later.
return 0;
}

case WM_SIZE:
{
app->ResizeGL(LOWORD(lParam),HIWORD(lParam));
return 0;
}
}
return DefWindowProc(hWnd,uMsg,wParam,lParam); //pass the message back to windows if we don't care about it.
};

//This is the function that should destroy the win32 resources only, not the application. It is the CreateGLWindow fallback.
GLvoid KillGLWindow(GLvoid)
{
//if we are in fullscreen goto desktop
if (g_fullscreen)
{
ChangeDisplaySettings(NULL,0);
ShowCursor(TRUE);
}
//delete all the window and opengl resources
if (hRC)
{
if (!wglMakeCurrent(NULL,NULL))
MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
if (!wglDeleteContext(hRC))
MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
hRC=NULL;
}
if (hDC && !ReleaseDC(hWnd,hDC))
{
MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
hDC=NULL;
}
if (hWnd && !DestroyWindow(hWnd))
{
MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
hWnd=NULL;
}
if (!UnregisterClass("WoIWindow",hInstance))
{
MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
hInstance=NULL;
}
};
//Creates the window, handles all error. Can be called worry free.
bool CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag)
{
GLuint PixelFormat;
WNDCLASS wc;
DWORD dwExStyle;
DWORD dwStyle;
RECT WindowRect;
WindowRect.left=(long)0;
WindowRect.right=(long)width;
WindowRect.top=(long)0;
WindowRect.bottom=(long)height;
g_fullscreen=fullscreenflag;

hInstance = GetModuleHandle(NULL);
wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; // Redraw On Move, And Own DC For Window
wc.lpfnWndProc = (WNDPROC) WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hbrBackground = NULL;
wc.lpszClassName = "WoIWindow";

if (!RegisterClass(&wc)) //Register the window with the OS.
{
MessageBox(NULL,"Failed To Register The Window Class.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return false;
}
if (g_fullscreen)
{
DEVMODE dmScreenSettings;
memset(&dmScreenSettings,0,sizeof(dmScreenSettings));
dmScreenSettings.dmSize=sizeof(dmScreenSettings);
dmScreenSettings.dmPelsWidth = width;
dmScreenSettings.dmPelsHeight = height;
dmScreenSettings.dmBitsPerPel = bits;
dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;
if (ChangeDisplaySettings(&dmScreenSettings,CDS_FULLSCREEN)!=DISP_CHANGE_SUCCESSFUL)
{
if (MessageBox(NULL,"The Requested Fullscreen Mode Is Not Supported By\nYour Video Card. Use Windowed Mode Instead?","NeHe GL",MB_YESNO|MB_ICONEXCLAMATION)==IDYES)
g_fullscreen=false;
else {
MessageBox(NULL,"Program Will Now Close.","No fullscreen",MB_OK|MB_ICONSTOP);
return false;
}
}
}
if (g_fullscreen) //If everything went ok with setting fullscreen:
{
dwExStyle=WS_EX_APPWINDOW;
dwStyle=WS_POPUP;
ShowCursor(FALSE);
} else { //If we could not set fullscreen:
dwExStyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE;
dwStyle=WS_OVERLAPPEDWINDOW;
}
AdjustWindowRectEx(&WindowRect, dwStyle, FALSE, dwExStyle); //no effect in fullscreen mode.

if (!(hWnd=CreateWindowEx( dwExStyle, // Extended Style For The Window
"WoIWindow", // Class Name
title, // Window Title
WS_CLIPSIBLINGS | // Required Window Style
WS_CLIPCHILDREN | // Required Window Style
dwStyle, // Selected Window Style
0, 0, // Window Position
WindowRect.right-WindowRect.left, // Calculate Adjusted Window Width
WindowRect.bottom-WindowRect.top, // Calculate Adjusted Window Height
NULL, // No Parent Window
hInstance, // Instance
NULL))) // Don't Pass Anything To WM_CREATE
{
KillGLWindow();
MessageBox(NULL,"Window Creation Error.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return false;
}

/***********************************CRITICAL WINDOW SETUP CODE**********************
*
* The structure created below is actually really important for the opengl context.
* If we wanted to add stencil shadows later we would have to change this stucture
* to make sure the the stencil buffer was enabled.
* It is also important to make sure that the linux SDL code sets up EXACTLY the
* as way as this.
*
***********************************************************************************/

static PIXELFORMATDESCRIPTOR pfd= // pfd Tells Windows How We Want Things To Be
{
sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor
1, // Version Number
PFD_DRAW_TO_WINDOW | // Format Must Support Window
PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
PFD_DOUBLEBUFFER, // Must Support Double Buffering
PFD_TYPE_RGBA, // Request An RGBA Format
bits, // Select Our Color Depth
0, 0, 0, 0, 0, 0, // Color Bits Ignored
0, // No Alpha Buffer
0, // Shift Bit Ignored
0, // No Accumulation Buffer
0, 0, 0, 0, // Accumulation Bits Ignored
16, // 16Bit Z-Buffer (Depth Buffer)
0, // No Stencil Buffer
0, // No Auxiliary Buffer
PFD_MAIN_PLANE, // Main Drawing Layer
0, // Reserved
0, 0, 0 // Layer Masks Ignored
};
if (!(hDC=GetDC(hWnd))) // Did We Get A Device Context?
{
KillGLWindow();
MessageBox(NULL,"Can't Create A GL Device Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return false;
}
if (!(PixelFormat=ChoosePixelFormat(hDC,&pfd))) // Did Windows Find A Matching Pixel Format?
{
KillGLWindow();
MessageBox(NULL,"Can't Find A Suitable PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return false;
}
if(!SetPixelFormat(hDC,PixelFormat,&pfd)) // Are We Able To Set The Pixel Format?
{
KillGLWindow();
MessageBox(NULL,"Can't Set The PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return false;
}
if (!(hRC=wglCreateContext(hDC))) // Are We Able To Get A Rendering Context?
{
KillGLWindow();
MessageBox(NULL,"Can't Create A GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return false;
}
if(!wglMakeCurrent(hDC,hRC)) // Try To Activate The Rendering Context
{
KillGLWindow();
MessageBox(NULL,"Can't Activate The GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return false;
}
ShowWindow(hWnd,SW_SHOW);
SetForegroundWindow(hWnd);
SetFocus(hWnd);
// ReSizeGLScene(width, height);

return true;
};

this is Application.cpp

#include "Application.h"

Application::Application()
{

};

Application::~Application()
{

};

void Application::Loop(float dt)
{
//RENDER HAS TO BE LAST SINCE SwapBuffers(hDC); IN WIN32 NEEDS TO COME RIGHT AFTER IT.
Render();
};

void Application::initGL()
{
//Generally don't mess with these.
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepth(1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);

//Can mess with these values.
glEnable(GL_TEXTURE_2D);
glDisable(GL_LIGHTING);
};

void Application::Render()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
};

void Application::ResizeGL(unsigned int width, unsigned int height)
{
if (height==0) //If the user makes the window 0 pixels high, set the height to 1 to avoid a divide by 0.
height=1;

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.1f,100.0f);
glMatrixMode(GL_MODELVIEW);
};

this is Application.h

#ifndef _APPLICATION_MOD_
#define _APPLICATION_MOD_

#ifdef WIN32
#include <windows.h>
#endif
#include <GL/gl.h>
#include <GL/glu.h>

/*This class is the "entery point" and the hub for the cross platfrom code. WIN32.cpp and LINUX.cpp both init this class and run its Loop() funciton.
The game is then run completely from inside here. The constructor can be considered as the main() function and the loop can be considered to run non-stop until the program is done.
The destructor HAS to clean up all memory this class creates. WIN32.cpp and LINUX.cpp will not handle any of it.*/

class Application
{
public:
/*The constuctor, can be considered to be the entery point of the app.*/
Application();
/*Can be considered to be the last lines run by the app.*/
~Application();

/*When the window is resized opengl needs to know about it so that it can adjust the aspect ratio. Pass the new info here and this function will take care of it.
IMPORTANT: Make sure this function is called when the window is created to setup the initial aspect.*/

void ResizeGL(unsigned int width, unsigned int height);

/*Looped from within the windowing code. dt is in seconds since the last call to this function.*/
void Loop(float dt);

/*Sets up opengl specific libraries like GLee and devIL. Also setups up lighting, rendering quality etc. Once this is called the app is ready for glBegin() and glEnd()*/
void initGL();
private:
void Render();
};

#endif

##### Share on other sites
I think Lord_Evil is right.

Here is a link to a zip file you may want to include in your distribution.

The zip file contains a directory whose content (note: not the directory itself) must be copied where your .exe lies.