Jump to content
  • Advertisement
Sign in to follow this  
Tesserex

OpenGL Quaternion camera, _translation_ problem

This topic is 4115 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I learned all about quaternions yesterday and successfully implemented them in OpenGL for my camera. I can spin about just wonderfully now with no gimbal lock. I'm making a ship-flying type game, and so obviously I want to be able to move the ship forward, in the local z direction. My code keeps track of the rotation quaternion, and with rotations I just have a small pitch or roll angle quaternion to multiply with and get the new rotation. To keep track of my world position, I have xpos, ypos, zpos. My problem seems to be getting the correct view vector out of the quaternion. My initial vector, for movement, is (0, 0, 1) because I want to move in Z. To rotate it with the quaternion, I looked up how to turn the quat into a rotation matrix. Multiplying that by (0,0,1) gives the third column of the matrix. These (I think) should be the new view vector, which I should add to my world position. Here's my code:
if (KeyDown(VK_SPACE))
	{
		xpos += 2*rotation.x*rotation.z - 2*rotation.w*rotation.y;
		ypos += 2*rotation.y*rotation.z + 2*rotation.w*rotation.x;
		zpos += rotation.w*rotation.w - rotation.x*rotation.x - rotation.y*rotation.y + rotation.z*rotation.z;
	}

...
glTranslatef(0.0f,0.0f,-6.0f);	// Move Into The Screen

// draw the ship here
	
glRotatef(114.6*acos(rotation.w),rotation.x,rotation.y,rotation.z);

glTranslatef(xpos,ypos,zpos);


From the start, when I move into Z, it works. When I pitch myself up and move into Y, it works. When I roll to one side and then pitch myself into the X, it moves in Y instead. I tried a random guess fix and swapped the + and - signs in the xpos and ypos formulae, to get the bottom row of the matrix instead. This actually fixed the x problem, so now movement on all three axes moved correctly by themselves. The big problem is still that this movement doesn't work. It seems to at first, but after a bit of flying around, I start sliding sideways, backwards, down, some combination of them, etc. Is my math wrong, or something else in my code?

Share this post


Link to post
Share on other sites
Advertisement
glRotate isn't going to be useful in this case. In fact, glRotate is rarely useful at all. With quaternions and OpenGL, you'll usually be constructing a matrix from the quaternion. In this case, since you are just doing a camera, it's even simpler because gluLookAt will multiply the appropriate matrix for you, without having to do it by hand.

All you need to do is write a method that rotates a vector by a quaternion. Use that to rotate {0, 0, 1} and {0, 1, 0} to get your appropriate forward and up vectors, and just plug those directly into gluLookAt(position, position + forward, up);

Share this post


Link to post
Share on other sites
Ok, that took a few times reading through, but I think I get it. Instead of rotate, do the use the entire quaternion->rotation matrix and multiply in my own method. Then use it on those two vectors, one for my forward flight direction and the other for my ship's roll / up direction. Use that for the camera instead of translating.

Will that fix my flight problem? I'm assuming I then take my transformed forward vector and add some speed multiple of it to my position vector.

Share this post


Link to post
Share on other sites
Quote:
Original post by Tesserex
Ok, that took a few times reading through, but I think I get it. Instead of rotate, do the use the entire quaternion->rotation matrix and multiply in my own method. Then use it on those two vectors, one for my forward flight direction and the other for my ship's roll / up direction. Use that for the camera instead of translating.

Will that fix my flight problem? I'm assuming I then take my transformed forward vector and add some speed multiple of it to my position vector.
Looking at the code you posted earlier:

glTranslatef(0.0f,0.0f,-6.0f);	// Move Into The Screen

// draw the ship here

glRotatef(114.6*acos(rotation.w),rotation.x,rotation.y,rotation.z);

glTranslatef(xpos,ypos,zpos);

I'm unclear as to whether this is intended to be a camera or object transform, but in either case the sequence of transforms appears to be incorrect.

Can you clarify the purpose of the transform? You mentioned that this was for a camera, but the comment 'draw the ship here' seems to indicate otherwise.

Anyway, as mentioned, when working with a rotation in quaternion form it's typical to convert it to a matrix before submitting it to OpenGL. Furthermore, the direction vectors can be extracted directly from this matrix; there's no need to perform additional vector rotations to derive these vectors.

As for 114.6, that is one 'magic number' :) I see what you're doing (converting to degrees and multiplying by two), but it would be far better to write a simple utility function to perform the conversion (even then using a named constant rather than 57.x), and then include the factor of 2 directly in the expression.

However, although it looks like this method should work, again, it would probably be better to use a matrix. Your method relies on the specifics of how a quaternion is used to represent a rotation; although it's important to understand these specifics, code that works with quaternions should treat them more like a 'black box'. In short, you should avoid mucking around with the quaternion elements directly in most cases.

If you can clarify what the purpose of the transform you posted is, we can probably point out more specifically where the code might be in error.

Share this post


Link to post
Share on other sites
Ok, for the purpose. Think Star Fox. Third person view. The ship is in the center of the screen, at it's location. The camera is a fixed distance directly behind it. So the first set of commands moves the camera back from the ship and draws the ship. Then we spin the world around the ship to orient it, then move the ship to it's location in space. Because the ship was already drawn, it's tied to the camera and they move together.

For now, though, I've removed that part and am going to get first person flying working first. It has the same problems though. I implemented some matrix stuff this time, and now my problems are backwards. The moving seems to work, but the rotating around is busted. Here's my new code:


Vector Transform(Vector v)
{
Vector nv;
nv.x = v.x*(w*w + x*x - y*y - z*z) + v.y*(2*x*y - 2*w*z) + v.z*(2*x*z + 2*w*y);
nv.y = v.x*(2*x*y + 2*w*z) + v.y*(w*w - x*x + y*y - z*z) + v.z*(2*y*z - 2*w*x);
nv.z = v.x*(2*x*z - 2*w*y) + v.y*(2*y*z + 2*w*x) + v.z*(w*w - x*x - y*y + z*z);
return nv;
}


You can probably tell, this just transforms any vector by the rotation matrix derived from the quaternion. This function is a member of my quaternion class.

Here's the keypress stuff...

if (KeyDown(VK_LEFT))
{
rotation.Multiply(rollmq);
up = rotation.Transform(yvect);
}
if (KeyDown(VK_RIGHT))
{
rotation.Multiply(rollq);
up = rotation.Transform(yvect);
}
if (KeyDown(VK_UP))
{
rotation.Multiply(pitchq);
forward = rotation.Transform(zvect);
}
if (KeyDown(VK_DOWN))
{
rotation.Multiply(pitchmq);
forward = rotation.Transform(zvect);
}
if (KeyDown(VK_SPACE))
{
position.x += forward.x;
position.y += forward.y;
position.z += forward.z;
}


"rollmq" and "pitchmq" are the tiny angle quaternions for the negative turns. I figured that the up and forward vectors need only be updated if the roll and pitch change, respectively. If I update both each time, it still doesn't work, but it's behaves differently, so this might be a clue.


gluLookAt(position.x,position.y,position.z,position.x+forward.x,position.y+forward.y,position.z+forward.z,up.x,up.y,up.z);



This is now my only camera modifying line. It seems ok, giving position, position+forward, and up.

Share this post


Link to post
Share on other sites
This isn't a complete answer to your question (I didn't look at your code carefully enough to comment in detail), but here are a few notes:

1. The problems of a) orienting and moving the ship, b) constructing an object matrix for the ship and rendering it, and c) constructing a view matrix for the camera should all be considered separately. I mention this because the code you posted seems to include elements of the solutions to all three problems, but itself is not the correct solution for any of them. Thinking about and solving the problems separately should help clear up some of this confusion.

2. Remember that when transforms are applied via OpenGL function calls, the order in which the transforms are applied is the opposite of the order in which the corresponding OpenGL function calls appear in the code.

3. The 'model transform' for an object typically consists of the transform sequence scale->rotate->translate (any of these is of course optional, and scale is often simply identity).

4. The 'view transform' that corresponds to a 'model transform' is, generally the speaking, the inverse of that transform. There are various ways the inverse can be computed. In your case it appears you're trying to do it manually by applying the inverse of the individual transforms in the opposite order. Leaving aside scale, this should translate to (translate^-1)->(rotation^1), where translate^-1 is the original translation negated, and rotation^-1 is the original rotation inverted (transpose for a matrix, conjugate for a quaternion, negation of angle or axis for an axis-angle pair).

5. Third-person cameras are a different problem. It looks like you're already taking this approach, but it would probably be best to get basic object motion and rendering and first-person camera mode working before trying to implement a proper 3rd-person camera.

I hope these notes will help you to identify some of the problems in your code. Feel free to post back if you have further questions.

Share this post


Link to post
Share on other sites
Despite not having a clue what your post was saying, it allowed me somehow to fix the problem entirely.

Using the new vector approach with gluLookAt solved my translation problems but the gimbal lock came back. That was quite annoying. My fix?

Reverse the order in which I multiplied my quaternions to add rotations.


if (KeyDown(VK_LEFT))
{
Quaternion temp = rollmq;
temp.Multiply(rotation);
rotation = temp;
//rotation.Multiply(rollmq);
}




And if anyone would like to know, I intend this to eventually become a space fighter game where you aren't limited to fighting in one plane (the 2d space kind of plane, not the vehicle). Also, I plan to control it with wiimotes :-D

Share this post


Link to post
Share on other sites
Unfortunately, you seem to be getting way ahead of yourself. You need to have a grasp on linear algebra(at least the parts that pertain to 3D graphics) and the OpenGL API. I'd suggest getting yourself a book, there are plenty of good ones out there on the subject. I personally liked "Mathematics for 3D Game Programming and Computer Graphics" and "3D Math Primer for Graphics and Game Development." Yes, it is true that you can learn plenty about all the fancy pants stuff out there just by using google, however, it *appears* as though you lack the basic understanding of what's really going on when you make these calls. It is incredibly important that you do understand that in order to use it properly.

That being said, here is the important parts of my camera class, which is far from perfect but may shine some light on it.


#import <OpenGL/gl.h>
#import <OpenGL/glu.h>

#import "OCCamera.h"

@implementation OCCamera

- (id)initWithLocation:(vector_t)loc width:(int)w height:(int)h
{
[super init];

position = loc;

screenWidth = w;
screenHeight = h;
screenRatio = (float)(screenWidth/screenHeight);
near = 1.0f;
far = 768.0;
fov = 45.0f;

rotation = quaternion_identity();
//Completely unneccesary, but a good reminder.
forward = quaternion_rotate_vector(rotation, vector3(0,0,1));
up = quaternion_rotate_vector(rotation, vector3(0,1,0));
right = quaternion_rotate_vector(rotation, vector3(1,0,0));
yaw = pitch = 0.0f;

interpolationSpeed = 1.0f;

return self;
}

- (void)animate:(float)dt
{
if(allowInterpolation)
{
elapsedTime += dt * interpolationSpeed;
if(elapsedTime > 1.0f)
{
elapsedTime = 1.0f;
allowInterpolation = false;
}
position = vector_add(initPosition, vector_scale(vector_subtract(destPosition, initPosition), elapsedTime));
rotation = Quaternion_SLERP(initRotation, destRotation, elapsedTime);

forward = quaternion_rotate_vector(rotation, vector3(0,0,1));
up = quaternion_rotate_vector(rotation, vector3(0,1,0));
right = quaternion_rotate_vector(rotation, vector3(1,0,0));

yaw = atan2(forward.x, forward.z);
pitch = acos(vector_dot_product(vector3(0, 1, 0), forward)) - OSML_PI / 2.0f;
}

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(fov, screenRatio, near, far);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

gluLookAt(position.x, position.y, position.z,
position.x + forward.x, position.y + forward.y, position.z + forward.z,
up.x, up.y, up.z);
}

- (void)rotateYaw:(double)delta
{
if(allowInterpolation)
return;

yaw += delta;
quaternion_t qPitch = quaternion_from_angle_around_axis(pitch, vector3(1,0,0));
quaternion_t qYaw = quaternion_from_angle_around_axis(yaw, vector3(0,1,0));

rotation = quaternion_product(qYaw, qPitch);

forward = quaternion_rotate_vector(rotation, vector3(0,0,1));
up = quaternion_rotate_vector(rotation, vector3(0,1,0));
right = quaternion_rotate_vector(rotation, vector3(1,0,0));
}
- (void)rotatePitch:(double)delta
{
if(allowInterpolation)
return;

pitch += delta;
quaternion_t qPitch = quaternion_from_angle_around_axis(pitch, vector3(1,0,0));
quaternion_t qYaw = quaternion_from_angle_around_axis(yaw, vector3(0,1,0));

rotation = quaternion_product(qYaw, qPitch);

forward = quaternion_rotate_vector(rotation, vector3(0,0,1));
up = quaternion_rotate_vector(rotation, vector3(0,1,0));
right = quaternion_rotate_vector(rotation, vector3(1,0,0));
}
- (void)setPitch:(double)p
{
if(allowInterpolation)
return;
pitch = p;
[self rotatePitch:0];
}
- (void)setYaw:(double)p
{
if(allowInterpolation)
return;
yaw = p;
[self rotateYaw:0];
}
- (vector_t)targetPoint:(vector_t)point distance:(float)f
{
return vector3(point.x - forward.x * f, point.y - forward.y * f, point.z - forward.z * f);
}
- (void)targetOnPoint:(vector_t)point distance:(float)f
{
if(allowInterpolation)
return;

position.y = point.y - forward.y * f;
position.z = point.z - forward.z * f;
position.x = point.x - forward.x * f;
}
- (void)orbitYaw:(double)amt aroundPoint:(vector_t)center
{
if(allowInterpolation)
return;

vector_t newPos;
quaternion_t newRot;
float radius = sqrtf(pow(position.x - center.x, 2) + pow(position.z - center.z, 2));

yawOrbit += amt;
newPos.x = center.x + cos(yawOrbit + OSML_HALF_PI) * radius;
newPos.y = position.y;
newPos.z = center.z - sin(yawOrbit + OSML_HALF_PI) * radius;

yaw += amt;
quaternion_t qPitch = quaternion_from_angle_around_axis(pitch, vector3(1,0,0));
quaternion_t qYaw = quaternion_from_angle_around_axis(yaw, vector3(0,1,0));
newRot = quaternion_product(qYaw, qPitch);

position = newPos;
[self rotateTo:newRot];
}
- (void)rotateTo:(quaternion_t)q
{
if(allowInterpolation)
return;

rotation = q;
forward = quaternion_rotate_vector(rotation, vector3(0,0,1));
up = quaternion_rotate_vector(rotation, vector3(0,1,0));
right = quaternion_rotate_vector(rotation, vector3(1,0,0));
}
- (bool)interpolateTo:(vector_t)pos withRotation:(quaternion_t)rot withSpeed:(float)speed cancelPrevious:(bool)cancel
{
if(allowInterpolation && !cancel)
return false;

interpolationSpeed = speed;
allowInterpolation = true;

elapsedTime = 0.0f;
initPosition = position;
destPosition = pos;
initRotation = rotation;
destRotation = rot;
return true;
}
- (void)moveForward:(double)amt
{
if(allowInterpolation)
return;

position.x += forward.x * amt;
position.y += forward.y * amt;
position.z += forward.z * amt;
}
- (void)moveRight:(double)amt
{
if(allowInterpolation)
return;

position.x -= right.x * amt;
position.y -= right.y * amt;
position.z -= right.z * amt;
}
- (void)moveUp:(double)amt
{
if(allowInterpolation)
return;

position.x += up.x * amt;
position.y += up.y * amt;
position.z += up.z * amt;
}
- (void)moveTo:(vector_t)pos
{
if(allowInterpolation)
return;

position = pos;
}
@end

Share this post


Link to post
Share on other sites
Well, first of all, it's fixed, thank you everyone for your insight.

Second, I'll not take offense to your comments, but your assumptions were wrong, Longjumper. I do have a grasp of linear algebra. I've been through a college course on it. Just last semester, in fact, with a primer on it (especially how it pertains to transformations) in my previous calculus 3 class. The only thing that was new to me here was the quaternion itself. I'm also in a class called Numerical Methods right now. You can probably guess I'm a CS major.

Thanks again to everyone.

Share this post


Link to post
Share on other sites
No offense was intended, of course. And as always, I will admit when I am wrong, and in this case I may be. However, I took a class in linear algebra and numerical methods some years back, and it is only recently that I have truly grasped it intuitively. Perhaps I was just projecting myself onto you, though. ;)

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Similar Content

    • By nOoNEE
      i am reading this book : link
      in the OpenGL Rendering Pipeline section there is a picture like this: link
      but the question is this i dont really understand why it is necessary to turn pixel data in to fragment and then fragment into pixel could please give me a source or a clear Explanation that why it is necessary ? thank you so mu
       
       
    • By Inbar_xz
      I'm using the OPENGL with eclipse+JOGL.
      My goal is to create movement of the camera and the player.
      I create main class, which create some box in 3D and hold 
      an object of PlayerAxis.
      I create PlayerAxis class which hold the axis of the player.
      If we want to move the camera, then in the main class I call to 
      the func "cameraMove"(from PlayerAxis) and it update the player axis.
      That's work good.
      The problem start if I move the camera on 2 axis, 
      for example if I move with the camera right(that's on the y axis)
      and then down(on the x axis) -
      in some point the move front is not to the front anymore..
      In order to move to the front, I do
      player.playerMoving(0, 0, 1);
      And I learn that in order to keep the front move, 
      I need to convert (0, 0, 1) to the player axis, and then add this.
      I think I dont do the convert right.. 
      I will be glad for help!

      Here is part of my PlayerAxis class:
       
      //player coordinate float x[] = new float[3]; float y[] = new float[3]; float z[] = new float[3]; public PlayerAxis(float move_step, float angle_move) { x[0] = 1; y[1] = 1; z[2] = -1; step = move_step; angle = angle_move; setTransMatrix(); } public void cameraMoving(float angle_step, String axis) { float[] new_x = x; float[] new_y = y; float[] new_z = z; float alfa = angle_step * angle; switch(axis) { case "x": new_z = addVectors(multScalar(z, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(z, SIN(alfa))); break; case "y": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(z, SIN(alfa))); new_z = subVectors(multScalar(z, COS(alfa)), multScalar(x, SIN(alfa))); break; case "z": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(x, SIN(alfa))); } x = new_x; y = new_y; z = new_z; normalization(); } public void playerMoving(float x_move, float y_move, float z_move) { float[] move = new float[3]; move[0] = x_move; move[1] = y_move; move[2] = z_move; setTransMatrix(); float[] trans_move = transVector(move); position[0] = position[0] + step*trans_move[0]; position[1] = position[1] + step*trans_move[1]; position[2] = position[2] + step*trans_move[2]; } public void setTransMatrix() { for (int i = 0; i < 3; i++) { coordiTrans[0][i] = x[i]; coordiTrans[1][i] = y[i]; coordiTrans[2][i] = z[i]; } } public float[] transVector(float[] v) { return multiplyMatrixInVector(coordiTrans, v); }  
      and in the main class i have this:
       
      public void keyPressed(KeyEvent e) { if (e.getKeyCode()== KeyEvent.VK_ESCAPE) { System.exit(0); //player move } else if (e.getKeyCode()== KeyEvent.VK_W) { //front //moveAmount[2] += -0.1f; player.playerMoving(0, 0, 1); } else if (e.getKeyCode()== KeyEvent.VK_S) { //back //moveAmount[2] += 0.1f; player.playerMoving(0, 0, -1); } else if (e.getKeyCode()== KeyEvent.VK_A) { //left //moveAmount[0] += -0.1f; player.playerMoving(-1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_D) { //right //moveAmount[0] += 0.1f; player.playerMoving(1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_E) { //moveAmount[0] += 0.1f; player.playerMoving(0, 1, 0); } else if (e.getKeyCode()== KeyEvent.VK_Q) { //moveAmount[0] += 0.1f; player.playerMoving(0, -1, 0); //camera move } else if (e.getKeyCode()== KeyEvent.VK_I) { //up player.cameraMoving(1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_K) { //down player.cameraMoving(-1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_L) { //right player.cameraMoving(-1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_J) { //left player.cameraMoving(1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_O) { //right round player.cameraMoving(-1, "z"); } else if (e.getKeyCode()== KeyEvent.VK_U) { //left round player.cameraMoving(1, "z"); } }  
      finallt found it.... i confused with the transformation matrix row and col. thanks anyway!
    • By Lewa
      So, i'm currently trying to implement an SSAO shader from THIS tutorial and i'm running into a few issues here.
      Now, this SSAO method requires view space positions and normals. I'm storing the normals in my deferred renderer in world-space so i had to do a conversion and reconstruct the position from the depth buffer.
      And something there goes horribly wrong (which has probably to do with worldspace to viewspace transformations).
      (here is the full shader source code if someone wants to take a look at it)
      Now, i suspect that the normals are the culprit.
      vec3 normal = ((uNormalViewMatrix*vec4(normalize(texture2D(sNormals, vTexcoord).rgb),1.0)).xyz); "sNormals" is a 2D texture which stores the normals in world space in a RGB FP16 buffer.
      Now i can't use the camera viewspace matrix to transform the normals into viewspace as the cameras position isn't set at (0,0,0), thus skewing the result.
      So what i did is to create a new viewmatrix specifically for this normal without the position at vec3(0,0,0);
      //"camera" is the camera which was used for rendering the normal buffer renderer.setUniform4m(ressources->shaderSSAO->getUniform("uNormalViewMatrix"), glmExt::createViewMatrix(glm::vec3(0,0,0),camera.getForward(),camera.getUp())//parameters are (position,forwardVector,upVector) ); Though i have the feeling this is the wrong approach. Is this right or is there a better/correct way of transforming a world space normal into viewspace?
    • By HawkDeath
      Hi,
      I'm trying mix two textures using own shader system, but I have a problem (I think) with uniforms.
      Code: https://github.com/HawkDeath/shader/tree/test
      To debug I use RenderDocs, but I did not receive good results. In the first attachment is my result, in the second attachment is what should be.
      PS. I base on this tutorial https://learnopengl.com/Getting-started/Textures.


    • By norman784
      I'm having issues loading textures, as I'm clueless on how to handle / load images maybe I missing something, but the past few days I just google a lot to try to find a solution. Well theres two issues I think, one I'm using Kotlin Native (EAP) and OpenGL wrapper / STB image, so I'm not quite sure wheres the issue, if someone with more experience could give me some hints on how to solve this issue?
      The code is here, if I'm not mistaken the workflow is pretty straight forward, stbi_load returns the pixels of the image (as char array or byte array) and you need to pass those pixels directly to glTexImage2D, so a I'm missing something here it seems.
      Regards
    • By Hashbrown
      I've noticed in most post processing tutorials several shaders are used one after another: one for bloom, another for contrast, and so on. For example: 
      postprocessing.quad.bind() // Effect 1 effect1.shader.bind(); postprocessing.texture.bind(); postprocessing.quad.draw(); postprocessing.texture.unbind(); effect1.shader.unbind(); // Effect 2 effect2.shader.bind(); // ...and so on postprocessing.quad.unbind() Is this good practice, how many shaders can I bind and unbind before I hit performance issues? I'm afraid I don't know what the good practices are in open/webGL regarding binding and unbinding resources. 
      I'm guessing binding many shaders at post processing is okay since the scene has already been updated and I'm just working on a quad and texture at that moment. Or is it more optimal to put shader code in chunks and bind less frequently? I'd love to use several shaders at post though. 
      Another example of what I'm doing at the moment:
      1) Loop through GameObjects, bind its phong shader (send color, shadow, spec, normal samplers), unbind all.
      2) At post: bind post processor quad, and loop/bind through different shader effects, and so on ...
      Thanks all! 
    • By phil67rpg
      void collision(int v) { collision_bug_one(0.0f, 10.0f); glutPostRedisplay(); glutTimerFunc(1000, collision, 0); } void coll_sprite() { if (board[0][0] == 1) { collision(0); flag[0][0] = 1; } } void erase_sprite() { if (flag[0][0] == 1) { glColor3f(0.0f, 0.0f, 0.0f); glBegin(GL_POLYGON); glVertex3f(0.0f, 10.0f, 0.0f); glVertex3f(0.0f, 9.0f, 0.0f); glVertex3f(1.0f, 9.0f, 0.0f); glVertex3f(1.0f, 10.0f, 0.0f); glEnd(); } } I am using glutTimerFunc to wait a small amount of time to display a collision sprite before I black out the sprite. unfortunately my code only blacks out the said sprite without drawing the collision sprite, I have done a great deal of research on the glutTimerFunc and  animation.
    • By Lewa
      So, i stumbled upon the topic of gamma correction.
      https://learnopengl.com/Advanced-Lighting/Gamma-Correction
      So from what i've been able to gather: (Please correct me if i'm wrong)
      Old CRT monitors couldn't display color linearly, that's why gamma correction was nessecary. Modern LCD/LED monitors don't have this issue anymore but apply gamma correction anyway. (For compatibility reasons? Can this be disabled?) All games have to apply gamma correction? (unsure about that) All textures stored in file formats (.png for example) are essentially stored in SRGB color space (as what we see on the monitor is skewed due to gamma correction. So the pixel information is the same, the percieved colors are just wrong.) This makes textures loaded into the GL_RGB format non linear, thus all lighting calculations are wrong You have to always use the GL_SRGB format to gamma correct/linearise textures which are in SRGB format  
      Now, i'm kinda confused how to proceed with applying gamma correction in OpenGL.
      First of, how can i check if my Monitor is applying gamma correction? I noticed in my monitor settings that my color format is set to "RGB" (can't modify it though.) I'm connected to my PC via a HDMI cable. I'm also using the full RGB range (0-255, not the 16 to ~240 range)
       
      What i tried to do is to apply a gamma correction shader shown in the tutorial above which looks essentially like this: (it's a postprocess shader which is applied at the end of the renderpipeline)
      vec3 gammaCorrection(vec3 color){ // gamma correction color = pow(color, vec3(1.0/2.2)); return color; } void main() { vec3 color; vec3 tex = texture2D(texture_diffuse, vTexcoord).rgb; color = gammaCorrection(tex); outputF = vec4(color,1.0f); } The results look like this:
      No gamma correction:
      With gamma correction:
       
      The colors in the gamma corrected image look really wased out. (To the point that it's damn ugly. As if someone overlayed a white half transparent texture. I want the colors to pop.)
      Do i have to change the textures from GL_RGB to GL_SRGB in order to gamma correct them in addition to applying the post process gamma correction shader? Do i have to do the same thing with all FBOs? Or is this washed out look the intended behaviour?
    • By OneKaidou
      Hi
       
      I am trying to program shadow volumes and i stumbled upon an artifact which i can not find the cause for.
      I generate the shadow volumes using a geometry shader with reversed extrusion (projecting the lightfacing triangles to infinity) and write the stencil buffer according to z-fail. The base of my code is the "lighting" chapter from learnopengl.com, where i extended the shader class to include geometry shader. I also modified the "lightingshader" to draw the ambient pass when "pass" is set to true and the diffuse/ specular pass when set to false. For easier testing i added a view controls to switch on/off the shadow volumes' color rendering or to change the cubes' position, i made the lightnumber controllable and changed the diffuse pass to render green for easier visualization of my problem.
       
      The first picture shows the rendered scene for one point light, all cubes and the front cube's shadow volume is the only one created (intentional). Here, all is rendered as it should be with all lit areas green and all areas inside the shadow volume black (with the volume's sides blended over).

      If i now turn on the shadow volumes for all the other cubes, we get a bit of a mess, but its also obvious that some areas that were in shadow before are now erroneously lit (for example the first cube to the right from the originaly shadow volumed cube). From my testing the areas erroneously lit are the ones where more than one shadow volume marks the area as shadowed.

      To check if a wrong stencil buffer value caused this problem i decided to change the stencil function for the diffuse pass to only render if the stencil is equal to 2. As i repeated this approach with different values for the stencil function i found out that if i set the value equal to 1 or any other uneven value the lit and shadowed areas are inverted and if i set it to 0 or any other even value i get the results shown above.
      This lead me to believe that the value and thus the stencil buffer values may be clamped to [0,1] which would also explain the artifact, because twice in shadow would equal in no shadow at all, but from what i found on the internet and from what i tested with
      GLint stencilSize = 0; glGetFramebufferAttachmentParameteriv(GL_DRAW_FRAMEBUFFER, GL_STENCIL, GL_FRAMEBUFFER_ATTACHMENT_STENCIL_SIZE, &stencilSize); my stencilsize is 8 bit, which should be values within [0,255].
      Does anyone know what might be the cause for this artifact or the confusing results with other stencil functions?
       
      // [the following code includes all used gl* functions, other parts are due to readability partialy excluded] // glfw: initialize and configure // ------------------------------ glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 4); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // glfw window creation // -------------------- GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL); if (window == NULL) { cout << "Failed to create GLFW window" << endl; glfwTerminate(); return -1; } glfwMakeContextCurrent(window); glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); glfwSetCursorPosCallback(window, mouse_callback); glfwSetScrollCallback(window, scroll_callback); // tell GLFW to capture our mouse glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); // glad: load all OpenGL function pointers // --------------------------------------- if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { cout << "Failed to initialize GLAD" << endl; return -1; } // ==================================================================================================== // window and functions are set up // ==================================================================================================== // configure global opengl state // ----------------------------- glEnable(GL_DEPTH_TEST); glEnable(GL_CULL_FACE); // build and compile our shader program [...] // set up vertex data (and buffer(s)) and configure vertex attributes [...] // shader configuration [...] // render loop // =========== while (!glfwWindowShouldClose(window)) { // input processing and fps calculation[...] // render // ------ glClearColor(0.1f, 0.1f, 0.1f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glDepthMask(GL_TRUE); //enable depth writing glDepthFunc(GL_LEQUAL); //avoid z-fighting //draw ambient component into color and depth buffer view = camera.GetViewMatrix(); projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f); // setting up lighting shader for ambient pass [...] // render the cubes glBindVertexArray(cubeVAO); for (unsigned int i = 0; i < 10; i++) { //position cube [...] glDrawArrays(GL_TRIANGLES, 0, 36); } //------------------------------------------------------------------------------------------------------------------------ glDepthMask(GL_FALSE); //disable depth writing glEnable(GL_BLEND); glBlendFunc(GL_ONE, GL_ONE); //additive blending glEnable(GL_STENCIL_TEST); //setting up shadowShader and lightingShader [...] for (int light = 0; light < lightsused; light++) { glDepthFunc(GL_LESS); glClear(GL_STENCIL_BUFFER_BIT); //configure stencil ops for front- and backface to write according to z-fail glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_DECR_WRAP, GL_KEEP); //-1 for front-facing glStencilOpSeparate(GL_BACK, GL_KEEP, GL_INCR_WRAP, GL_KEEP); //+1 for back-facing glStencilFunc(GL_ALWAYS, 0, GL_TRUE); //stencil test always passes if(hidevolumes) glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); //disable writing to the color buffer glDisable(GL_CULL_FACE); glEnable(GL_DEPTH_CLAMP); //necessary to render SVs into infinity //draw SV------------------- shadowShader.use(); shadowShader.setInt("lightnr", light); int nr; if (onecaster) nr = 1; else nr = 10; for (int i = 0; i < nr; i++) { //position cube[...] glDrawArrays(GL_TRIANGLES, 0, 36); } //-------------------------- glDisable(GL_DEPTH_CLAMP); glEnable(GL_CULL_FACE); glStencilFunc(GL_EQUAL, 0, GL_TRUE); //stencil test passes for ==0 so only for non shadowed areas glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); //keep stencil values for illumination glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); //enable writing to the color buffer glDepthFunc(GL_LEQUAL); //avoid z-fighting //draw diffuse and specular pass lightingShader.use(); lightingShader.setInt("lightnr", light); // render the cubes for (unsigned int i = 0; i < 10; i++) { //position cube[...] glDrawArrays(GL_TRIANGLES, 0, 36); } } glDisable(GL_BLEND); glDepthMask(GL_TRUE); //enable depth writing glDisable(GL_STENCIL_TEST); //------------------------------------------------------------------------------------------------------------------------ // also draw the lamp object(s) [...] // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) // ------------------------------------------------------------------------------- glfwSwapBuffers(window); glfwP } // optional: de-allocate all resources once they've outlived their purpose: // ------------------------------------------------------------------------ glDeleteVertexArrays(1, &cubeVAO); glDeleteVertexArrays(1, &lightVAO); glDeleteBuffers(1, &VBO); // glfw: terminate, clearing all previously allocated GLFW resources. // ------------------------------------------------------------------ glfwTerminate(); return 0;  
    • By Green_Baron
      Hi,
      i am self teaching me graphics and oo programming and came upon this:
      My Window class creates an input handler instance, the glfw user pointer is redirected to that object and methods there do the input handling for keyboard and mouse. That works. Now as part of the input handling i have an orbiting camera that is controlled by mouse movement. GLFW_CURSOR_DISABLED is set as proposed in the glfw manual. The manual says that in this case the cursor is automagically reset to the window's center. But if i don't reset it manually with glfwSetCursorPos( center ) mouse values seem to add up until the scene is locked up.
      Here are some code snippets, mostly standard from tutorials:
      // EventHandler m_eventHandler = new EventHandler( this, glm::vec3( 0.0f, 5.0f, 0.0f ), glm::vec3( 0.0f, 1.0f, 0.0f ) ); glfwSetWindowUserPointer( m_window, m_eventHandler ); m_eventHandler->setCallbacks(); Creation of the input handler during window creation. For now, the camera is part of the input handler, hence the two vectors (position, up-vector).  In future i'll take that functionally out into an own class that inherits from the event handler.
      void EventHandler::setCallbacks() { glfwSetCursorPosCallback( m_window->getWindow(), cursorPosCallback ); glfwSetKeyCallback( m_window->getWindow(), keyCallback ); glfwSetScrollCallback( m_window->getWindow(), scrollCallback ); glfwSetMouseButtonCallback( m_window->getWindow(), mouseButtonCallback ); } Set callbacks in the input handler.
      // static void EventHandler::cursorPosCallback( GLFWwindow *w, double x, double y ) { EventHandler *c = reinterpret_cast<EventHandler *>( glfwGetWindowUserPointer( w ) ); c->onMouseMove( (float)x, (float)y ); } Example for the cursor pos callback redirection to a class method.
      // virtual void EventHandler::onMouseMove( float x, float y ) { if( x != 0 || y != 0 ) { // @todo cursor should be set automatically, according to doc if( m_window->isCursorDisabled() ) glfwSetCursorPos( m_window->getWindow(), m_center.x, m_center.y ); // switch up/down because its more intuitive m_yaw += m_mouseSensitivity * ( m_center.x - x ); m_pitch += m_mouseSensitivity * ( m_center.y - y ); // to avoid locking if( m_pitch > 89.0f ) m_pitch = 89.0f; if( m_pitch < -89.0f ) m_pitch = -89.0f; // Update Front, Right and Up Vectors updateCameraVectors(); } } // onMouseMove() Mouse movement processor method. The interesting part is the manual reset of the mouse position that made the thing work ...
      // straight line distance between the camera and look at point, here (0,0,0) float distance = glm::length( m_target - m_position ); // Calculate the camera position using the distance and angles float camX = distance * -std::sin( glm::radians( m_yaw ) ) * std::cos( glm::radians( m_pitch) ); float camY = distance * -std::sin( glm::radians( m_pitch) ); float camZ = -distance * std::cos( glm::radians( m_yaw ) ) * std::cos( glm::radians( m_pitch) ); // Set the camera position and perspective vectors m_position = glm::vec3( camX, camY, camZ ); m_front = glm::vec3( 0.0, 0.0, 0.0 ) - m_position; m_up = m_worldUp; m_right = glm::normalize( glm::cross( m_front, m_worldUp ) ); glm::lookAt( m_position, m_front, m_up ); Orbiting camera vectors calculation in updateCameraVectors().
      Now, for my understanding, as the glfw manual explicitly states that if cursor is disabled then it is reset to the center, but my code only works if it is reset manually, i fear i am doing something wrong. It is not world moving (only if there is a world to render :-)), but somehow i am curious what i am missing.
       
      I am not a professional programmer, just a hobbyist, so it may well be that i got something principally wrong :-)
      And thanks for any hints and so ...
       
  • Advertisement
  • Popular Now

  • Forum Statistics

    • Total Topics
      631354
    • Total Posts
      2999490
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!