Jump to content
  • Advertisement
Sign in to follow this  
padlock87

OpenGL camera movement

This topic is 3759 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

hey, i'm new to opengl and i need some help. lately i've been experimenting with camera movement and i was able to figure out how to move and rotate it using the arrow keys. however, when i want the camera to move "forward" or "backward", it moves on a slight angle as opposed to straight forward or backward. is there a way i can fix this? i tried changing where the camera started, which direction it's facing, and altering the formulas for the arrow keys. any help would be greatly appreciated. here's my code so far. ignore anything irrelevant! lol
#include <windows.h>
#include <gl.h>
#include <glut.h>
#include <math.h>

//angle of rotation
float xpos = 0, ypos = 0, zpos = 0, xrot = 0, yrot = 90, angle=0.0;

void cube (void) {
    glColor3f(1.0f, 0.0f, 0.0f);
    glutSolidCube(2);
}

void walls (void){
	glColor3f(0.75f, 0.75f, 1.0f);
	glBegin(GL_POLYGON);
	glVertex3f(2.0,0.0,2.0);
	glVertex3f(4.0,0.0,2.0);
	glVertex3f(4.0,2.0,2.0);
	glVertex3f(2.0,2.0,2.0);
	glEnd();
	glBegin(GL_POLYGON);
	glVertex3f(2.0,0.0,2.0);
	glVertex3f(2.0,0.0,4.0);
	glVertex3f(2.0,2.0,4.0);
	glVertex3f(2.0,2.0,2.0);
	glEnd();
	glFlush();
}

void init (void) {
    glEnable (GL_DEPTH_TEST); //enable the depth testing
    //glEnable (GL_LIGHTING); //enable the lighting
    //glEnable (GL_LIGHT0); //enable LIGHT0, our Diffuse Light
    glShadeModel (GL_SMOOTH); //set the shader to smooth shader
}

void camera (void) {
    glRotatef(xrot,1.0,0.0,0.0);
    glRotatef(yrot,0.0,1.0,0.0);
    glTranslated(-xpos,-ypos,-zpos);
}

void display (void) {
    glClearColor (0.0,0.0,0.0,1.0); //clear the screen to black
    glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //clear the color buffer and the depth buffer
    glLoadIdentity();
	gluLookAt (1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0); //camera position, x,y,z, looking at x,y,z, Up Positions of the camera
    camera();

	glColor3f(0.75f, 1.00f, 0.75f);
	glBegin(GL_POLYGON);
	glVertex3f(-25.0,0.0,-25.0);
	glVertex3f(-25.0,0.0,25.0);
	glVertex3f(25.0,0.0,25.0);
	glVertex3f(25.0,0.0,-25.0);
	glEnd();
	glFlush();

    //cube(); //call the cube drawing function
	walls();
    glutSwapBuffers(); //swap the buffers
    angle++; //increase the angle
}

void reshape (int w, int h) {
    glViewport (0, 0, (GLsizei)w, (GLsizei)h); //set the viewport to the current window specifications
    glMatrixMode (GL_PROJECTION); //set the matrix to projection
    glLoadIdentity ();
    gluPerspective (60, (GLfloat)w / (GLfloat)h, 1.0, 100.0); //set the perspective (angle of sight, width, height, , depth)
    glMatrixMode (GL_MODELVIEW); //set the matrix back to model
}

void processNormalKeys(unsigned char key, int x, int y) {

    if (key == 27)
    {
        glutLeaveGameMode(); //set the resolution how it was
        exit(0); //quit the program
    }
}

void processSpecialKeys(int key, int x, int y) {

    switch(key) {
        case GLUT_KEY_RIGHT:
            yrot += 1;
            if (yrot > 360) yrot -= 360;
            break;
        case GLUT_KEY_LEFT:
            yrot -= 1;
            if (yrot < -360) yrot += 360;
            break;
        case GLUT_KEY_PAGE_UP:
            xrot += 1;
            if (xrot >360) xrot -= 360;
            break;
        case GLUT_KEY_PAGE_DOWN:
            xrot -= 1;
            if (xrot < -360) xrot += 360;
            break;
        case GLUT_KEY_UP:
            float xrotrad, yrotrad;
            yrotrad = (yrot / 180 * 3.141592654f);
            xrotrad = (xrot / 180 * 3.141592654f);
            xpos += float(sin(yrotrad))/10;
            zpos -= float(cos(yrotrad))/10;
            ypos -= float(sin(xrotrad))/10;
            break;
        case GLUT_KEY_DOWN:
            xrotrad, yrotrad;
            yrotrad = (yrot / 180 * 3.141592654f);
            xrotrad = (xrot / 180 * 3.141592654f);
            xpos -= float(sin(yrotrad))/10;
            zpos += float(cos(yrotrad))/10;
            ypos += float(sin(xrotrad))/10;
            break;
    }
}

int main (int argc, char **argv) {
    glutInit (&argc, argv);
    glutInitDisplayMode (GLUT_DOUBLE | GLUT_DEPTH); //set the display to Double buffer, with depth
    glutGameModeString( "990x768:32@75" ); //the settings for fullscreen mode
    glutEnterGameMode(); //set glut to fullscreen using the settings in the line above
    init (); //call the init function
    glutDisplayFunc (display); //use the display function to draw everything
    glutIdleFunc (display); //update any variables in display, display can be changed to anyhing, as long as you move the variables to be updated, in this case, angle++;
    glutReshapeFunc (reshape); //reshape the window accordingly

    glutKeyboardFunc(processNormalKeys);
    glutSpecialFunc(processSpecialKeys);

    glutMainLoop (); //call the main loop
    return 0;
}
[Edited by - padlock87 on February 7, 2008 9:21:23 PM]

Share this post


Link to post
Share on other sites
Advertisement
Rotated movement is not as simple as a triangle (dist*sin(angle) or cos())

You will need 3D rotation equations:
assuming you have an axis of
|y
|__ x
z/

for rotation about the Y axis (left-right):
x' = distance*cos(yrotation)-distance*sin(yrotation)
z' = distance*cos(yrotation)+distance*sin(yrotation)

for rotation about the X axis (up-down):
y' = distance*cos(xrotation)-distance*sin(xrotation)
z' = distance*cos(xrotation)+distance*sin(xrotation)

for rotation about the Z axis (roll):
z' = distance*cos(zrotation)-distance*sin(zrotation)
x' = distance*cos(zrotation)+distance*sin(zrotation)

you will need to multiply the rotations together to get the full rotation

Google "3D Rotation" or "Matrix Rotation" and you'll get so much information you won't know what to do...

Quaternion is another method which is extremely powerful (a littler harder to understand tho). Matrix math (you may have to build in some matrix functions for them to work) is easier to understand, a little more cumbersome. And straight math (what I mentioned above) is pretty easy to understand but getting an arbitrary axis is a bit harder. Good luck

Share this post


Link to post
Share on other sites
Hey padlock, Im also a noob in opengl. Can you explain me how you used the camera(); function wrt the glulookat(); command to transform the camera. By the way you have made a really nice code for using glulookat();



Share this post


Link to post
Share on other sites
thanks for the compliment! lol



to be honest, i have no idea how i did it! lol i kind of just searched online for a couple of hours and copied and pasted code together. it was more of a trial and error kind of thing. i'd like to say that i knew what i was doing, but i'd be lying lol.

i can't explain camera() because i have no idea what those functions do. however, i can (hopefully) explain gluLookAt. somebody please correct me if any of this is wrong!


the first three numbers designate the camera position. this is pretty straight forward. its just a simple (x,y,z) coordinate.

the second three numbers designate the coordinates where the camera is looking. for example, if your code is gluLookAt (1.0, 1.0, 1.0, 0.0, 0.0, 0.0,... the camera is positioned at (1,1,1) and is looking down at (0,0,0)

the last three numbers really confused me at first. for a while i couldn't find anything online that explained to it in a way that i understood. basically, this coordinate tells the computer which way is up. i think that its based from (0,0,0) but im not sure. so for most programs, it would probably be (0,1,0)

i hope this helps!

Share this post


Link to post
Share on other sites
ya you are right about the first two sets of vectors that is the view and the position. The third vector is an up vector. This is the y-axis vector. Mostly it is passed as (0,1,0) because it is 1 unit above the origin that is the camera just rests on the grid(if their is any)focusing at the negative z-axis. If you want to tilt your camera then you can modify your up vector.
You can find more in the OpenGL Programming Guide. Its a really good book.
Yesterday i found tutorials about the camera stuff.
->Nate robins tutorials
->Apron tutorials(implemented openGL in win32). A little complex but You will understand. Good tutorials.(google it).
I said your tutorials where good because they where simple compared to the tutorials i found on the net.
Thanks for your reply.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By mmmax3d
      Hi everyone,
      I would need some assistance from anyone who has a similar experience
      or a nice idea!
      I have created a skybox (as cube) and now I need to add a floor/ground.
      The skybox is created from cubemap and initially it was infinite.
      Now it is finite with a specific size. The floor is a quad in the middle
      of the skybox, like a horizon.
      I have two problems:
      When moving the skybox upwards or downwards, I need to
      sample from points even above the horizon while sampling
      from the botton at the same time.  I am trying to create a seamless blending of the texture
      at the points of the horizon, when the quad is connected
      to the skybox. However, I get skew effects. Does anybody has done sth similar?
      Is there any good practice?
      Thanks everyone!
    • By iArtist93
      I'm trying to implement PBR into my simple OpenGL renderer and trying to use multiple lighting passes, I'm using one pass per light for rendering as follow:
      1- First pass = depth
      2- Second pass = ambient
      3- [3 .. n] for all the lights in the scene.
      I'm using the blending function glBlendFunc(GL_ONE, GL_ONE) for passes [3..n], and i'm doing a Gamma Correction at the end of each fragment shader.
      But i still have a problem with the output image it just looks noisy specially when i'm using texture maps.
      Is there anything wrong with those steps or is there any improvement to this process?
    • By babaliaris
      Hello Everyone!
      I'm learning openGL, and currently i'm making a simple 2D game engine to test what I've learn so far.  In order to not say to much, i made a video in which i'm showing you the behavior of the rendering.
      Video: 
       
      What i was expecting to happen, was the player moving around. When i render only the player, he moves as i would expect. When i add a second Sprite object, instead of the Player, this new sprite object is moving and finally if i add a third Sprite object the third one is moving. And the weird think is that i'm transforming the Vertices of the Player so why the transformation is being applied somewhere else?
       
      Take a look at my code:
      Sprite Class
      (You mostly need to see the Constructor, the Render Method and the Move Method)
      #include "Brain.h" #include <glm/gtc/matrix_transform.hpp> #include <vector> struct Sprite::Implementation { //Position. struct pos pos; //Tag. std::string tag; //Texture. Texture *texture; //Model matrix. glm::mat4 model; //Vertex Array Object. VertexArray *vao; //Vertex Buffer Object. VertexBuffer *vbo; //Layout. VertexBufferLayout *layout; //Index Buffer Object. IndexBuffer *ibo; //Shader. Shader *program; //Brains. std::vector<Brain *> brains; //Deconstructor. ~Implementation(); }; Sprite::Sprite(std::string image_path, std::string tag, float x, float y) { //Create Pointer To Implementaion. m_Impl = new Implementation(); //Set the Position of the Sprite object. m_Impl->pos.x = x; m_Impl->pos.y = y; //Set the tag. m_Impl->tag = tag; //Create The Texture. m_Impl->texture = new Texture(image_path); //Initialize the model Matrix. m_Impl->model = glm::mat4(1.0f); //Get the Width and the Height of the Texture. int width = m_Impl->texture->GetWidth(); int height = m_Impl->texture->GetHeight(); //Create the Verticies. float verticies[] = { //Positions //Texture Coordinates. x, y, 0.0f, 0.0f, x + width, y, 1.0f, 0.0f, x + width, y + height, 1.0f, 1.0f, x, y + height, 0.0f, 1.0f }; //Create the Indicies. unsigned int indicies[] = { 0, 1, 2, 2, 3, 0 }; //Create Vertex Array. m_Impl->vao = new VertexArray(); //Create the Vertex Buffer. m_Impl->vbo = new VertexBuffer((void *)verticies, sizeof(verticies)); //Create The Layout. m_Impl->layout = new VertexBufferLayout(); m_Impl->layout->PushFloat(2); m_Impl->layout->PushFloat(2); m_Impl->vao->AddBuffer(m_Impl->vbo, m_Impl->layout); //Create the Index Buffer. m_Impl->ibo = new IndexBuffer(indicies, 6); //Create the new shader. m_Impl->program = new Shader("Shaders/SpriteShader.shader"); } //Render. void Sprite::Render(Window * window) { //Create the projection Matrix based on the current window width and height. glm::mat4 proj = glm::ortho(0.0f, (float)window->GetWidth(), 0.0f, (float)window->GetHeight(), -1.0f, 1.0f); //Set the MVP Uniform. m_Impl->program->setUniformMat4f("u_MVP", proj * m_Impl->model); //Run All The Brains (Scripts) of this game object (sprite). for (unsigned int i = 0; i < m_Impl->brains.size(); i++) { //Get Current Brain. Brain *brain = m_Impl->brains[i]; //Call the start function only once! if (brain->GetStart()) { brain->SetStart(false); brain->Start(); } //Call the update function every frame. brain->Update(); } //Render. window->GetRenderer()->Draw(m_Impl->vao, m_Impl->ibo, m_Impl->texture, m_Impl->program); } void Sprite::Move(float speed, bool left, bool right, bool up, bool down) { if (left) { m_Impl->pos.x -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(-speed, 0, 0)); } if (right) { m_Impl->pos.x += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(speed, 0, 0)); } if (up) { m_Impl->pos.y += speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, speed, 0)); } if (down) { m_Impl->pos.y -= speed; m_Impl->model = glm::translate(m_Impl->model, glm::vec3(0, -speed, 0)); } } void Sprite::AddBrain(Brain * brain) { //Push back the brain object. m_Impl->brains.push_back(brain); } pos *Sprite::GetPos() { return &m_Impl->pos; } std::string Sprite::GetTag() { return m_Impl->tag; } int Sprite::GetWidth() { return m_Impl->texture->GetWidth(); } int Sprite::GetHeight() { return m_Impl->texture->GetHeight(); } Sprite::~Sprite() { delete m_Impl; } //Implementation Deconstructor. Sprite::Implementation::~Implementation() { delete texture; delete vao; delete vbo; delete layout; delete ibo; delete program; }  
      Renderer Class
      #include "Renderer.h" #include "Error.h" Renderer::Renderer() { } Renderer::~Renderer() { } void Renderer::Draw(VertexArray * vao, IndexBuffer * ibo, Texture *texture, Shader * program) { vao->Bind(); ibo->Bind(); program->Bind(); if (texture != NULL) texture->Bind(); GLCall(glDrawElements(GL_TRIANGLES, ibo->GetCount(), GL_UNSIGNED_INT, NULL)); } void Renderer::Clear(float r, float g, float b) { GLCall(glClearColor(r, g, b, 1.0)); GLCall(glClear(GL_COLOR_BUFFER_BIT)); } void Renderer::Update(GLFWwindow *window) { /* Swap front and back buffers */ glfwSwapBuffers(window); /* Poll for and process events */ glfwPollEvents(); }  
      Shader Code
      #shader vertex #version 330 core layout(location = 0) in vec4 aPos; layout(location = 1) in vec2 aTexCoord; out vec2 t_TexCoord; uniform mat4 u_MVP; void main() { gl_Position = u_MVP * aPos; t_TexCoord = aTexCoord; } #shader fragment #version 330 core out vec4 aColor; in vec2 t_TexCoord; uniform sampler2D u_Texture; void main() { aColor = texture(u_Texture, t_TexCoord); } Also i'm pretty sure that every time i'm hitting the up, down, left and right arrows on the keyboard, i'm changing the model Matrix of the Player and not the others.
       
      Window Class:
      #include "Window.h" #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Error.h" #include "Renderer.h" #include "Scene.h" #include "Input.h" //Global Variables. int screen_width, screen_height; //On Window Resize. void OnWindowResize(GLFWwindow *window, int width, int height); //Implementation Structure. struct Window::Implementation { //GLFW Window. GLFWwindow *GLFW_window; //Renderer. Renderer *renderer; //Delta Time. double delta_time; //Frames Per Second. int fps; //Scene. Scene *scnene; //Input. Input *input; //Deconstructor. ~Implementation(); }; //Window Constructor. Window::Window(std::string title, int width, int height) { //Initializing width and height. screen_width = width; screen_height = height; //Create Pointer To Implementation. m_Impl = new Implementation(); //Try initializing GLFW. if (!glfwInit()) { std::cout << "GLFW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); exit(-1); } //Setting up OpenGL Version 3.3 Core Profile. glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); /* Create a windowed mode window and its OpenGL context */ m_Impl->GLFW_window = glfwCreateWindow(width, height, title.c_str(), NULL, NULL); if (!m_Impl->GLFW_window) { std::cout << "GLFW could not create a window!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } /* Make the window's context current */ glfwMakeContextCurrent(m_Impl->GLFW_window); //Initialize GLEW. if(glewInit() != GLEW_OK) { std::cout << "GLEW could not be initialized!" << std::endl; std::cout << "Press ENTER to exit..." << std::endl; std::cin.get(); glfwTerminate(); exit(-1); } //Enabling Blending. GLCall(glEnable(GL_BLEND)); GLCall(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)); //Setting the ViewPort. GLCall(glViewport(0, 0, width, height)); //**********Initializing Implementation**********// m_Impl->renderer = new Renderer(); m_Impl->delta_time = 0.0; m_Impl->fps = 0; m_Impl->input = new Input(this); //**********Initializing Implementation**********// //Set Frame Buffer Size Callback. glfwSetFramebufferSizeCallback(m_Impl->GLFW_window, OnWindowResize); } //Window Deconstructor. Window::~Window() { delete m_Impl; } //Window Main Loop. void Window::MainLoop() { //Time Variables. double start_time = 0, end_time = 0, old_time = 0, total_time = 0; //Frames Counter. int frames = 0; /* Loop until the user closes the window */ while (!glfwWindowShouldClose(m_Impl->GLFW_window)) { old_time = start_time; //Total time of previous frame. start_time = glfwGetTime(); //Current frame start time. //Calculate the Delta Time. m_Impl->delta_time = start_time - old_time; //Get Frames Per Second. if (total_time >= 1) { m_Impl->fps = frames; total_time = 0; frames = 0; } //Clearing The Screen. m_Impl->renderer->Clear(0, 0, 0); //Render The Scene. if (m_Impl->scnene != NULL) m_Impl->scnene->Render(this); //Updating the Screen. m_Impl->renderer->Update(m_Impl->GLFW_window); //Increasing frames counter. frames++; //End Time. end_time = glfwGetTime(); //Total time after the frame completed. total_time += end_time - start_time; } //Terminate GLFW. glfwTerminate(); } //Load Scene. void Window::LoadScene(Scene * scene) { //Set the scene. m_Impl->scnene = scene; } //Get Delta Time. double Window::GetDeltaTime() { return m_Impl->delta_time; } //Get FPS. int Window::GetFPS() { return m_Impl->fps; } //Get Width. int Window::GetWidth() { return screen_width; } //Get Height. int Window::GetHeight() { return screen_height; } //Get Input. Input * Window::GetInput() { return m_Impl->input; } Renderer * Window::GetRenderer() { return m_Impl->renderer; } GLFWwindow * Window::GetGLFWindow() { return m_Impl->GLFW_window; } //Implementation Deconstructor. Window::Implementation::~Implementation() { delete renderer; delete input; } //OnWindowResize void OnWindowResize(GLFWwindow *window, int width, int height) { screen_width = width; screen_height = height; //Updating the ViewPort. GLCall(glViewport(0, 0, width, height)); }  
      Brain Class
      #include "Brain.h" #include "Sprite.h" #include "Window.h" struct Brain::Implementation { //Just A Flag. bool started; //Window Pointer. Window *window; //Sprite Pointer. Sprite *sprite; }; Brain::Brain(Window *window, Sprite *sprite) { //Create Pointer To Implementation. m_Impl = new Implementation(); //Initialize Implementation. m_Impl->started = true; m_Impl->window = window; m_Impl->sprite = sprite; } Brain::~Brain() { //Delete Pointer To Implementation. delete m_Impl; } void Brain::Start() { } void Brain::Update() { } Window * Brain::GetWindow() { return m_Impl->window; } Sprite * Brain::GetSprite() { return m_Impl->sprite; } bool Brain::GetStart() { return m_Impl->started; } void Brain::SetStart(bool value) { m_Impl->started = value; } Script Class (Its a Brain Subclass!!!)
      #include "Script.h" Script::Script(Window *window, Sprite *sprite) : Brain(window, sprite) { } Script::~Script() { } void Script::Start() { std::cout << "Game Started!" << std::endl; } void Script::Update() { Input *input = this->GetWindow()->GetInput(); Sprite *sp = this->GetSprite(); //Move this sprite. this->GetSprite()->Move(200 * this->GetWindow()->GetDeltaTime(), input->GetKeyDown("left"), input->GetKeyDown("right"), input->GetKeyDown("up"), input->GetKeyDown("down")); std::cout << sp->GetTag().c_str() << ".x = " << sp->GetPos()->x << ", " << sp->GetTag().c_str() << ".y = " << sp->GetPos()->y << std::endl; }  
      Main:
      #include "SpaceShooterEngine.h" #include "Script.h" int main() { Window w("title", 600,600); Scene *scene = new Scene(); Sprite *player = new Sprite("Resources/Images/player.png", "Player", 100,100); Sprite *other = new Sprite("Resources/Images/cherno.png", "Other", 400, 100); Sprite *other2 = new Sprite("Resources/Images/cherno.png", "Other", 300, 400); Brain *brain = new Script(&w, player); player->AddBrain(brain); scene->AddSprite(player); scene->AddSprite(other); scene->AddSprite(other2); w.LoadScene(scene); w.MainLoop(); return 0; }  
       
      I literally can't find what is wrong. If you need more code, ask me to post it. I will also attach all the source files.
      Brain.cpp
      Error.cpp
      IndexBuffer.cpp
      Input.cpp
      Renderer.cpp
      Scene.cpp
      Shader.cpp
      Sprite.cpp
      Texture.cpp
      VertexArray.cpp
      VertexBuffer.cpp
      VertexBufferLayout.cpp
      Window.cpp
      Brain.h
      Error.h
      IndexBuffer.h
      Input.h
      Renderer.h
      Scene.h
      Shader.h
      SpaceShooterEngine.h
      Sprite.h
      Texture.h
      VertexArray.h
      VertexBuffer.h
      VertexBufferLayout.h
      Window.h
    • By Cristian Decu
      Hello fellow programmers,
      For a couple of days now i've decided to build my own planet renderer just to see how floating point precision issues
      can be tackled. As you probably imagine, i've quickly faced FPP issues when trying to render absurdly large planets.
       
      I have used the classical quadtree LOD approach;
      I've generated my grids with 33 vertices, (x: -1 to 1, y: -1 to 1, z = 0).
      Each grid is managed by a TerrainNode class that, depending on the side it represents (top, bottom, left right, front, back),
      creates a special rotation-translation matrix that moves and rotates the grid away from the origin so that when i finally
      normalize all the vertices on my vertex shader i can get a perfect sphere.
      T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, 1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(180.0), glm::dvec3(1.0, 0.0, 0.0)); sides[0] = new TerrainNode(1.0, radius, T * R, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_FRONT)); T = glm::translate(glm::dmat4(1.0), glm::dvec3(0.0, 0.0, -1.0)); R = glm::rotate(glm::dmat4(1.0), glm::radians(0.0), glm::dvec3(1.0, 0.0, 0.0)); sides[1] = new TerrainNode(1.0, radius, R * T, glm::dvec2(0.0, 0.0), new TerrainTile(1.0, SIDE_BACK)); // So on and so forth for the rest of the sides As you can see, for the front side grid, i rotate it 180 degrees to make it face the camera and push it towards the eye;
      the back side is handled almost the same way only that i don't need to rotate it but simply push it away from the eye.
      The same technique is applied for the rest of the faces (obviously, with the proper rotations / translations).
      The matrix that result from the multiplication of R and T (in that particular order) is send to my vertex shader as `r_Grid'.
      // spherify vec3 V = normalize((r_Grid * vec4(r_Vertex, 1.0)).xyz); gl_Position = r_ModelViewProjection * vec4(V, 1.0); The `r_ModelViewProjection' matrix is generated on the CPU in this manner.
      // No the most efficient way, but it works. glm::dmat4 Camera::getMatrix() { // Create the view matrix // Roll, Yaw and Pitch are all quaternions. glm::dmat4 View = glm::toMat4(Roll) * glm::toMat4(Pitch) * glm::toMat4(Yaw); // The model matrix is generated by translating in the oposite direction of the camera. glm::dmat4 Model = glm::translate(glm::dmat4(1.0), -Position); // Projection = glm::perspective(fovY, aspect, zNear, zFar); // zNear = 0.1, zFar = 1.0995116e12 return Projection * View * Model; } I managed to get rid of z-fighting by using a technique called Logarithmic Depth Buffer described in this article; it works amazingly well, no z-fighting at all, at least not visible.
      Each frame i'm rendering each node by sending the generated matrices this way.
      // set the r_ModelViewProjection uniform // Sneak in the mRadiusMatrix which is a matrix that contains the radius of my planet. Shader::setUniform(0, Camera::getInstance()->getMatrix() * mRadiusMatrix); // set the r_Grid matrix uniform i created earlier. Shader::setUniform(1, r_Grid); grid->render(); My planet's radius is around 6400000.0 units, absurdly large, but that's what i really want to achieve;
      Everything works well, the node's split and merge as you'd expect, however whenever i get close to the surface
      of the planet the rounding errors start to kick in giving me that lovely stairs effect.
      I've read that if i could render each grid relative to the camera i could get better precision on the surface, effectively
      getting rid of those rounding errors.
       
      My question is how can i achieve this relative to camera rendering in my scenario here?
      I know that i have to do most of the work on the CPU with double, and that's exactly what i'm doing.
      I only use double on the CPU side where i also do most of the matrix multiplications.
      As you can see from my vertex shader i only do the usual r_ModelViewProjection * (some vertex coords).
       
      Thank you for your suggestions!
       
  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!