• Advertisement
Sign in to follow this  

Is there a built-in Python vector class?

This topic is 3575 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I'm experimenting with flocking bots, and I don't want to go to the trouble of coming up with a vector class. Is there something that works well already out there? Thanks.

Share this post


Link to post
Share on other sites
Advertisement
If you want, here's the vector class that I wrote. No guarantees on anything, but it's working great for me. It's only for 2D vectors, but I'm guessing that that will be enough for your work. Note that I also define a class Point to be the same as Vector, which you might not want.

import math
class Vector:
'Represents a 2D vector.'
def __init__(self, x = 0, y = 0):
self.x = float(x)
self.y = float(y)

def __add__(self, val):
return Point( self[0] + val[0], self[1] + val[1] )

def __sub__(self,val):
return Point( self[0] - val[0], self[1] - val[1] )

def __iadd__(self, val):
self.x = val[0] + self.x
self.y = val[1] + self.y
return self

def __isub__(self, val):
self.x = self.x - val[0]
self.y = self.y - val[1]
return self

def __div__(self, val):
return Point( self[0] / val, self[1] / val )

def __mul__(self, val):
return Point( self[0] * val, self[1] * val )

def __idiv__(self, val):
self[0] = self[0] / val
self[1] = self[1] / val
return self

def __imul__(self, val):
self[0] = self[0] * val
self[1] = self[1] * val
return self

def __getitem__(self, key):
if( key == 0):
return self.x
elif( key == 1):
return self.y
else:
raise Exception("Invalid key to Point")

def __setitem__(self, key, value):
if( key == 0):
self.x = value
elif( key == 1):
self.y = value
else:
raise Exception("Invalid key to Point")

def __str__(self):
return "(" + str(self.x) + "," + str(self.y) + ")"
Point = Vector

def DistanceSqrd( point1, point2 ):
'Returns the distance between two points squared. Marginally faster than Distance()'
return ( (point1[0]-point2[0])**2 + (point1[1]-point2[1])**2)
def Distance( point1, point2 ):
'Returns the distance between two points'
return math.sqrt( DistanceSqrd(point1,point2) )
def LengthSqrd( vec ):
'Returns the length of a vector sqaured. Faster than Length(), but only marginally'
return vec[0]**2 + vec[1]**2
def Length( vec ):
'Returns the length of a vector'
return math.sqrt( LengthSqrd(vec) )
def Normalize( vec ):
'Returns a new vector that has the same direction as vec, but has a length of one.'
if( vec[0] == 0. and vec[1] == 0. ):
return Vector(0.,0.)
return vec / Length(vec)
def Dot( a,b ):
'Computes the dot product of a and b'
return a[0]*b[0] + a[1]*b[1]
def ProjectOnto( w,v ):
'Projects w onto v.'
return v * Dot(w,v) / LengthSqrd(v)



In addition, it seems that you can use NumPy for vector work, but I can't find much good documentation on how to do that. NumPy would require installation by end-users, but it's darn near standard for Python and if you're just playing around, that might not be an issue.

Hope that helps.

Share this post


Link to post
Share on other sites
What kind of vector class are you looking for? A mathematical vector class for doing orientations and dot products, etc. or a container vector class for storing stuff in?

Share this post


Link to post
Share on other sites
Sorry -- that could have been a little more clear. I'm looking for a mathematical vector class, not a container. I think I would want to be familiar with pretty much one of the most basic features of the language before I go about writing programs in it :)

Share this post


Link to post
Share on other sites
Quote:
Original post by silverphyre673
Sorry -- that could have been a little more clear. I'm looking for a mathematical vector class, not a container. I think I would want to be familiar with pretty much one of the most basic features of the language before I go about writing programs in it :)


One of the built-in Python types is 'complex', and complex numbers are (2D) points (or vectors).

Share this post


Link to post
Share on other sites
In almost all cases which make use of vector math, the array type in the numpy module is appropriate. All of the appropriate functions are implemented in optimized C, and the types are closely compatible with python lists.

Some 'common' operations on numpy arrays that you would expect on a custom 2 or 3 dimensional vector class aren't present (dot product), but are very easy to reproduce.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement