Jump to content
  • Advertisement
Sign in to follow this  
Ysaneya

OpenGL Fast computed noise

This topic is 3615 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

In this thread I'm going to speak of some experiments I've been making on 3D noise generated on the GPU. Reference test The reference 3D noise implementation is from Stefan Gustavson in GLSL. Here is the thread about it with a link to the full GLSL code: GLSL 3D Noise by Stefan Gustavson I'm generating, combining and rendering 32 octaves of his noise per pixel into a 513x513 fp32 texture. I'm getting 20 fps on an ATI Radeon X1950 XT. Computed noise The idea with the computed noise basis is to generate some kind of coherent noise (like Perlin noise), but avoiding the permutation/lookup tables and integer/bit-shifting arithmetics. Originally, it was developped for the CPU, to be easily optimized in SSE2. Here's the port to GLSL:
float randomizer(const float x)
{
    float z = mod(x, 5612.0);
    z = mod(z, 3.1415927 * 2.0);
    return(fract(cos(z) * 56812.5453));
}

const float A = 1.0;
const float B = 57.0;
const float C = 113.0;
const vec3 ABC = vec3(A, B, C);

float cnoise(const in vec3 xx)
{
    vec3 x = mod(xx + 32768.0, 65536.0);
    vec3 ix = floor(x);
    vec3 fx = fract(x);
    vec3 wx = fx*fx*(3.0-2.0*fx);
    float nn = dot(ix, ABC);

    float re = mix(mix(mix(randomizer(nn),
                           randomizer(nn + A),wx.x),
                       mix(randomizer(nn + B),
                           randomizer(nn + A + B),wx.x),wx.y),
                   mix(mix(randomizer(nn + C),
                           randomizer(nn + C + A),wx.x),
                       mix(randomizer(nn + C + B),
                           randomizer(nn + C + B + A),wx.x),wx.y),wx.z);

    return 1.0 - 2.0 * re;
}
This version runs at 50 fps in 82 asm instructions. Fast computed noise I then optimized it a bit further by working on 4 values at a time instead of a scalar:
vec4 randomizer4(const vec4 x)
{
    vec4 z = mod(x, vec4(5612.0));
    z = mod(z, vec4(3.1415927 * 2.0));
    return(fract(cos(z) * vec4(56812.5453)));
}

const float A = 1.0;
const float B = 57.0;
const float C = 113.0;
const vec3 ABC = vec3(A, B, C);
const vec4 A3 = vec4(0, B, C, C+B);
const vec4 A4 = vec4(A, A+B, C+A, C+A+B);

float cnoise4(const in vec3 xx)
{
    vec3 x = mod(xx + 32768.0, 65536.0);
    vec3 ix = floor(x);
    vec3 fx = fract(x);
    vec3 wx = fx*fx*(3.0-2.0*fx);
    float nn = dot(ix, ABC);

    vec4 N1 = nn + A3;
    vec4 N2 = nn + A4;
    vec4 R1 = randomizerSin4(N1);
    vec4 R2 = randomizerSin4(N2);
    vec4 R = mix(R1, R2, wx.x);
    float re = mix(mix(R.x, R.y, wx.y), mix(R.z, R.w, wx.y), wx.z);

    return 1.0 - 2.0 * re;
}
This version is considerably shorter and a bit faster: 62 fps in 47 asm instructions. This is 3 times faster than the reference noise, and it's pure arithmetic (no texture lookups or anything). It's also suitable for shader model 2.0 cards. Quality Of course, you don't get a noise that is 3 times faster without paying a price. Here are the drawbacks of this version as far as I know: 1. There's a seam in the noise around coordinates +-32768 (tiling). Originally it was around 0, due to the mod() operations in the randomizer function, but I moved this seam to +-32768 with the first line: vec3 x = mod(xx + 32768.0, 65536.0); 2. Like my "fast noise" implementation on the cpu (cf. my journal), the features aren't distributed as well as the original noise. Quality might be okay or not, depending on your use. See comparison screenshots below.. Reference noise Fast computed noise 3. And my main problem: the results are different on NVidia and ATI cards. I believe this is due to internal precision in the registers. It decreases when the big constants (65536, 56812.5453, etc.. ) are reduced, but the noise begins to have pretty ugly repeating patterns. 4. It needs a better randomizer function: all the constants and formulas are arbitrary and found by trial & error. I would be glad if somebody found a better randomizer function that behaves the same on NV / ATI cards and that doesn't have horrible/repeating patterns. Basically, I'm posting it here in the hope that it'll be useful to somebody in its current state, or that somebody could experiment with it and improve its quality (I'm currently lacking time to continue on it). Y.

Share this post


Link to post
Share on other sites
Advertisement
Hmm, is it just me who can't see the decreased quality in the fast version?
Sure, it looks different, but not particularly badly distributed or anything imo.

And yeah, when I looked at Gustavson's implementation I wondered why it worked on scalars too, but didn't get around to implementing a proper vectorized version. Nice job. :)

Share this post


Link to post
Share on other sites
The difference of quality won't become apparent until you take the first derivative of the image (the normal map or bump map) which is typically used for coming up with local slope and for lighting.

The idea of Perlin's fast gradient noise was not to improve the quality of several octaves of fBm noise... that looks just fine without interpolating gradients. The entire point was to improve the visual quality of the BUMP map or normal map of fBm for real-time lighting and such, this is where the axis-aligned nature of non-gradient interpolation shows its ugly face.

If we really want to compare quality, we should be posting images of the resulting bump map, not of the raw fBm output.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Similar Content

    • By plz717
      Hello, everyone! I hope my problem isn't too 'beginnerish'. I'm doing research on motion synthesis now, trying to implement the Deep Mimic paper (DeepMimic) by BINPENG XUE, in this paper, I need to first retarget character A's motion to another character B to make the reference motion clips for character B, since we don't have character B‘s reference motion. The most important thing is that in the paper, the author copied character A's joint's rotation with respective to joint's local coordinate system (not the parent) to character B. In my personal understanding, the joint's rotation with respective to joint's local coordinate system is something like that in the attached photo, where for the Elbow joint, i need to get the Elbow's rotation in the elbow's local coordinate system (i'm very grateful for you to share your ideas if i have misunderstanding about it 🙂)
      I have searched many materials on the internet about how to extract the local joint's information from FBX, the most relative one i found is the pivot rotation( and geometric transformation, object offset transformation). I'm a beginner in computer graphics, and i'm confused about whether the pivot rotation( or geometric transformation, object offset transformation) is exactly the joint's local rotation i'm seeking? I hope someone that have any ideas can help me, I'd be very grateful for any pointers in the right direction. Thanks in advance! 

    • By nOoNEE
      hello guys , i have some questions  what does glLinkProgram  and  glBindAttribLocation do?  i searched but there wasnt any good resource 
    • By owenjr
      Hi, I'm a Multimedia Engineering student. I am about to finish my dergree and I'm already thinking about what topic to cover in my final college project.
      I'm interested in the procedural animation with c++ and OpenGL of creatures, something like a spider for example. Can someone tell me what are the issues I should investigate to carry it out? I understand that it has some dependence on artificial intelligence but I do not know to what extent. Can someone help me to find information about it? Thank you very much.
       
      Examples: 
      - Procedural multi-legged walking animation
      - Procedural Locomotion of Multi-Legged Characters in Dynamic Environments
    • By Lewa
      So, i'm still on my quest to unterstanding the intricacies of HDR and implementing this into my engine. Currently i'm at the step to implementing tonemapping. I stumbled upon this blogposts:
      http://filmicworlds.com/blog/filmic-tonemapping-operators/
      http://frictionalgames.blogspot.com/2012/09/tech-feature-hdr-lightning.html
      and tried to implement some of those mentioned tonemapping methods into my postprocessing shader.
      The issue is that none of them creates the same results as shown in the blogpost which definitely has to do with the initial range in which the values are stored in the HDR buffer. For simplicity sake i store the values between 0 and 1 in the HDR buffer (ambient light is 0.3, directional light is 0.7)
      This is the tonemapping code:
      vec3 Uncharted2Tonemap(vec3 x) { float A = 0.15; float B = 0.50; float C = 0.10; float D = 0.20; float E = 0.02; float F = 0.30; return ((x*(A*x+C*B)+D*E)/(x*(A*x+B)+D*F))-E/F; } This is without the uncharted tonemapping:
      This is with the uncharted tonemapping:
      Which makes the image a lot darker.
      The shader code looks like this:
      void main() { vec3 color = texture2D(texture_diffuse, vTexcoord).rgb; color = Uncharted2Tonemap(color); //gamma correction (use only if not done in tonemapping code) color = gammaCorrection(color); outputF = vec4(color,1.0f); } Now, from my understanding is that tonemapping should bring the range down from HDR to 0-1.
      But the output of the tonemapping function heavily depends on the initial range of the values in the HDR buffer. (You can't expect to set the sun intensity the first time to 10 and the second time to 1000 and excpect the same result if you feed that into the tonemapper.) So i suppose that this also depends on the exposure which i have to implement?
      To check this i plotted the tonemapping curve:
      You can see that the curve goes only up to around to a value of 0.21 (while being fed a value of 1) and then basically flattens out. (which would explain why the image got darker.)
       
      My guestion is: In what range should the values in the HDR buffer be which then get tonemapped? Do i have to bring them down to a range of 0-1 by multiplying with the exposure?
      For example, if i increase the values of the light by 10 (directional light would be 7 and ambient light 3) then i would need to divide HDR values by 10 in order to get a value range of 0-1 which then could be fed into the tonemapping curve. Is that correct?
    • By nOoNEE
      i am reading this book : link
      in the OpenGL Rendering Pipeline section there is a picture like this: link
      but the question is this i dont really understand why it is necessary to turn pixel data in to fragment and then fragment into pixel could please give me a source or a clear Explanation that why it is necessary ? thank you so mu
       
       
    • By Inbar_xz
      I'm using the OPENGL with eclipse+JOGL.
      My goal is to create movement of the camera and the player.
      I create main class, which create some box in 3D and hold 
      an object of PlayerAxis.
      I create PlayerAxis class which hold the axis of the player.
      If we want to move the camera, then in the main class I call to 
      the func "cameraMove"(from PlayerAxis) and it update the player axis.
      That's work good.
      The problem start if I move the camera on 2 axis, 
      for example if I move with the camera right(that's on the y axis)
      and then down(on the x axis) -
      in some point the move front is not to the front anymore..
      In order to move to the front, I do
      player.playerMoving(0, 0, 1);
      And I learn that in order to keep the front move, 
      I need to convert (0, 0, 1) to the player axis, and then add this.
      I think I dont do the convert right.. 
      I will be glad for help!

      Here is part of my PlayerAxis class:
       
      //player coordinate float x[] = new float[3]; float y[] = new float[3]; float z[] = new float[3]; public PlayerAxis(float move_step, float angle_move) { x[0] = 1; y[1] = 1; z[2] = -1; step = move_step; angle = angle_move; setTransMatrix(); } public void cameraMoving(float angle_step, String axis) { float[] new_x = x; float[] new_y = y; float[] new_z = z; float alfa = angle_step * angle; switch(axis) { case "x": new_z = addVectors(multScalar(z, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(z, SIN(alfa))); break; case "y": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(z, SIN(alfa))); new_z = subVectors(multScalar(z, COS(alfa)), multScalar(x, SIN(alfa))); break; case "z": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(x, SIN(alfa))); } x = new_x; y = new_y; z = new_z; normalization(); } public void playerMoving(float x_move, float y_move, float z_move) { float[] move = new float[3]; move[0] = x_move; move[1] = y_move; move[2] = z_move; setTransMatrix(); float[] trans_move = transVector(move); position[0] = position[0] + step*trans_move[0]; position[1] = position[1] + step*trans_move[1]; position[2] = position[2] + step*trans_move[2]; } public void setTransMatrix() { for (int i = 0; i < 3; i++) { coordiTrans[0][i] = x[i]; coordiTrans[1][i] = y[i]; coordiTrans[2][i] = z[i]; } } public float[] transVector(float[] v) { return multiplyMatrixInVector(coordiTrans, v); }  
      and in the main class i have this:
       
      public void keyPressed(KeyEvent e) { if (e.getKeyCode()== KeyEvent.VK_ESCAPE) { System.exit(0); //player move } else if (e.getKeyCode()== KeyEvent.VK_W) { //front //moveAmount[2] += -0.1f; player.playerMoving(0, 0, 1); } else if (e.getKeyCode()== KeyEvent.VK_S) { //back //moveAmount[2] += 0.1f; player.playerMoving(0, 0, -1); } else if (e.getKeyCode()== KeyEvent.VK_A) { //left //moveAmount[0] += -0.1f; player.playerMoving(-1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_D) { //right //moveAmount[0] += 0.1f; player.playerMoving(1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_E) { //moveAmount[0] += 0.1f; player.playerMoving(0, 1, 0); } else if (e.getKeyCode()== KeyEvent.VK_Q) { //moveAmount[0] += 0.1f; player.playerMoving(0, -1, 0); //camera move } else if (e.getKeyCode()== KeyEvent.VK_I) { //up player.cameraMoving(1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_K) { //down player.cameraMoving(-1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_L) { //right player.cameraMoving(-1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_J) { //left player.cameraMoving(1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_O) { //right round player.cameraMoving(-1, "z"); } else if (e.getKeyCode()== KeyEvent.VK_U) { //left round player.cameraMoving(1, "z"); } }  
      finallt found it.... i confused with the transformation matrix row and col. thanks anyway!
    • By Lewa
      So, i'm currently trying to implement an SSAO shader from THIS tutorial and i'm running into a few issues here.
      Now, this SSAO method requires view space positions and normals. I'm storing the normals in my deferred renderer in world-space so i had to do a conversion and reconstruct the position from the depth buffer.
      And something there goes horribly wrong (which has probably to do with worldspace to viewspace transformations).
      (here is the full shader source code if someone wants to take a look at it)
      Now, i suspect that the normals are the culprit.
      vec3 normal = ((uNormalViewMatrix*vec4(normalize(texture2D(sNormals, vTexcoord).rgb),1.0)).xyz); "sNormals" is a 2D texture which stores the normals in world space in a RGB FP16 buffer.
      Now i can't use the camera viewspace matrix to transform the normals into viewspace as the cameras position isn't set at (0,0,0), thus skewing the result.
      So what i did is to create a new viewmatrix specifically for this normal without the position at vec3(0,0,0);
      //"camera" is the camera which was used for rendering the normal buffer renderer.setUniform4m(ressources->shaderSSAO->getUniform("uNormalViewMatrix"), glmExt::createViewMatrix(glm::vec3(0,0,0),camera.getForward(),camera.getUp())//parameters are (position,forwardVector,upVector) ); Though i have the feeling this is the wrong approach. Is this right or is there a better/correct way of transforming a world space normal into viewspace?
    • By HawkDeath
      Hi,
      I'm trying mix two textures using own shader system, but I have a problem (I think) with uniforms.
      Code: https://github.com/HawkDeath/shader/tree/test
      To debug I use RenderDocs, but I did not receive good results. In the first attachment is my result, in the second attachment is what should be.
      PS. I base on this tutorial https://learnopengl.com/Getting-started/Textures.


    • By norman784
      I'm having issues loading textures, as I'm clueless on how to handle / load images maybe I missing something, but the past few days I just google a lot to try to find a solution. Well theres two issues I think, one I'm using Kotlin Native (EAP) and OpenGL wrapper / STB image, so I'm not quite sure wheres the issue, if someone with more experience could give me some hints on how to solve this issue?
      The code is here, if I'm not mistaken the workflow is pretty straight forward, stbi_load returns the pixels of the image (as char array or byte array) and you need to pass those pixels directly to glTexImage2D, so a I'm missing something here it seems.
      Regards
    • By Hashbrown
      I've noticed in most post processing tutorials several shaders are used one after another: one for bloom, another for contrast, and so on. For example: 
      postprocessing.quad.bind() // Effect 1 effect1.shader.bind(); postprocessing.texture.bind(); postprocessing.quad.draw(); postprocessing.texture.unbind(); effect1.shader.unbind(); // Effect 2 effect2.shader.bind(); // ...and so on postprocessing.quad.unbind() Is this good practice, how many shaders can I bind and unbind before I hit performance issues? I'm afraid I don't know what the good practices are in open/webGL regarding binding and unbinding resources. 
      I'm guessing binding many shaders at post processing is okay since the scene has already been updated and I'm just working on a quad and texture at that moment. Or is it more optimal to put shader code in chunks and bind less frequently? I'd love to use several shaders at post though. 
      Another example of what I'm doing at the moment:
      1) Loop through GameObjects, bind its phong shader (send color, shadow, spec, normal samplers), unbind all.
      2) At post: bind post processor quad, and loop/bind through different shader effects, and so on ...
      Thanks all! 
  • Advertisement
  • Popular Now

  • Forum Statistics

    • Total Topics
      631393
    • Total Posts
      2999757
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!