Sign in to follow this  

OpenGL row/column-major confusion

This topic is 3382 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi! According to the documentation, Direct3D uses row major matrices, while OpenGL uses column major ones. I did the following test (a rotation of 90 degrees around axis X):
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(90, 1, 0, 0);
GLfloat mtxGL[16];
glGetFloatv(GL_MODELVIEW_MATRIX, mtxGL);

Checked the result in debugger:
mtxGL:
		[0]	1.0000000	float
		[1]	0.00000000	float
		[2]	0.00000000	float
		[3]	0.00000000	float
		[4]	0.00000000	float
		[5]	1.2167964e-008	float
		[6]	1.0000000	float
		[7]	0.00000000	float
		[8]	0.00000000	float
		[9]	-1.0000000	float
		[10]	1.2167964e-008	float
		[11]	0.00000000	float
		[12]	0.00000000	float
		[13]	0.00000000	float
		[14]	0.00000000	float
		[15]	1.0000000	float

D3DXMATRIX mtxD3D;
D3DXMatrixRotationX(&mtxD3D, 90/180.0f*3.1415f);

Checked the result in debugger:
(float*)&mtxD3D,16:
		[0]	1.0000000	float
		[1]	0.00000000	float
		[2]	0.00000000	float
		[3]	0.00000000	float
		[4]	0.00000000	float
		[5]	4.6328703e-005	float
		[6]	1.0000000	float
		[7]	0.00000000	float
		[8]	0.00000000	float
		[9]	-1.0000000	float
		[10]	4.6328703e-005	float
		[11]	0.00000000	float
		[12]	0.00000000	float
		[13]	0.00000000	float
		[14]	0.00000000	float
		[15]	1.0000000	float

So they seem to be stored in the same way. I checked translation too, and found the same result. I expected the D3D and OpenGL matrices to be the transposes of each other, as D3D is row major and OpenGL is column major. I know that one has to transpose matrices before passing between the two APIs, so where is the catch? :) Thanks

Share this post


Link to post
Share on other sites
OpenGL uses column vectors as well as column major order for matrices, while D3D uses row vectors as well as row major order for matrices. Both conventions together means in fact that the memory layout of matrices is the same for openGL as well as D3D. But notice that this comes from the convention how the 2D matrix is linearized to be stored in computer memory.

Mathematically a matrix is "still" 2D, and the transpose operation has actually be performed to convert matrices/vectors between OpenGL and D3D.

Share this post


Link to post
Share on other sites
Thanks for your reply!

I'm trying hard but still don't get it. Given that the memory layout is the same, I don't see why one would have to transpose the matrices.
Could you please describe it in a bit more detail or point me to a paper that contains an explanation?

Thanks in advance,
bela

Share this post


Link to post
Share on other sites
Quote:
Original post by bela
Thanks for your reply!

I'm trying hard but still don't get it. Given that the memory layout is the same, I don't see why one would have to transpose the matrices.
Could you please describe it in a bit more detail or point me to a paper that contains an explanation?

Thanks in advance,
bela
The first step is to understand that there are two issues involved - matrix 'majorness' and vector notation convention - and they are orthogonal (that is, they are fully independent of each other).

The issue of vector notation convention is purely mathematical (that is, we can discuss it without any reference to or concern with the details of how a computer works). The choice to be made here is whether vectors are represented using column matrices (i.e. 'column vectors'), or using row matrices (i.e. 'row vectors').

Matrix-vector multiplication using row vectors looks like this:
[ x' y' ] = [ x y ][ a b ]
[ c d ]
While with column vectors it looks like this:
[ x' ] = [ a b ][ x ]
[ y' ] [ c d ][ y ]
This follows naturally from the definition of matrix multiplication (and has some additional implications involving the order in which transform matrices must be multiplied to achieve a given effect).

Now we can turn our attention to 'matrix majorness'. This really has nothing to do with math; it's purely a programming-related issue.

Basically, when presented with the problem of storing a matrix in memory, we have to decide whether to store it by rows, or by columns. If we store it by rows, we get something like this (the numbers indicate the location of the element in memory relative to the beginning of the memory block in which the matrix is stored):
[ 0 1 2 ]
[ 3 4 5 ]
[ 6 7 8 ]
Or, we can store by column, like this:
[ 0 3 6 ]
[ 1 4 7 ]
[ 2 5 8 ]
One other thing we have to factor in (I should have mentioned this earlier) is that transform matrices must be built differently, depending on whether they are intended to be used with row vectors or with column vectors. For example, a translation matrix that will be used with row vectors looks like this:
[ 1 0 0 0 ]
[ 0 1 0 0 ]
[ 0 0 1 0 ]
[ x y z 1 ]
While a translation matrix that will be used with column vectors looks like this:
[ 1 0 0 x ]
[ 0 1 0 y ]
[ 0 0 1 z ]
[ 0 0 0 1 ]
(I won't go into the 'why' of this, but please ask if it's not clear.)

So now we have two choices to make: matrix majorness, and vector notation convention. The two choices are (strictly speaking - we're not concerning ourselves here with practical issues such as vectorization and so forth) orthogonal; that is, any of the four combinations:
row major, row vectors
row major, column vectors
column major, row vectors
column major, column vectors
Is valid.

Now we can finally bring it all home. There are four possible combinations here, but we'll only concern ourselves with numbers 1 and 4, above, as these are the conventions used by DirectX and OpenGL, respectively. (There's probably some nuance here regarding whether OpenGL 'really' specifies a notational convention, but most OpenGL references use column vectors, which is good enough for our purposes.)

So, let's write out our translation matrix again, first row major with row vectors, and then column major with column vectors (on the left will be the matrix, and on the right will be the layout in memory):
[ 1 0 0 0 ]    [  0  1  2  3  ]
[ 0 1 0 0 ] [ 4 5 6 7 ]
[ 0 0 1 0 ] [ 8 9 10 11 ]
[ x y z 1 ] [ 12 13 14 15 ]

[ 1 0 0 x ] [ 0 4 8 12 ]
[ 0 1 0 y ] [ 1 5 9 13 ]
[ 0 0 1 z ] [ 2 6 10 14 ]
[ 0 0 0 1 ] [ 3 7 11 15 ]
As you can see, in each case the same location in memory corresponds to the same transform element, and this is why it is not necessary (in practice) to transpose a matrix when going from one API to another. All the API cares about is that the transform is laid out in memory in a certain way (specifically, that the elements of the basis vectors are contiguous).

Now, one might very well say that OpenGL and DirectX matrices are transposes of each other, but if so they would be speaking mathematically, not in terms of programming. If you were to write out a 'DirectX matrix', you would need to transpose it in order for it to 'look like' an OpenGL matrix, but this is a notation issue only; as far as the computer is concerned, they look the same.

This is all a bit confusing (and this took a long time to type!), so please post back if you have any further questions.

Share this post


Link to post
Share on other sites

This topic is 3382 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Similar Content

    • By xhcao
      Does sync be needed to read texture content after access texture image in compute shader?
      My simple code is as below,
      glUseProgram(program.get());
      glBindImageTexture(0, texture[0], 0, GL_FALSE, 3, GL_READ_ONLY, GL_R32UI);
      glBindImageTexture(1, texture[1], 0, GL_FALSE, 4, GL_WRITE_ONLY, GL_R32UI);
      glDispatchCompute(1, 1, 1);
      // Does sync be needed here?
      glUseProgram(0);
      glBindFramebuffer(GL_READ_FRAMEBUFFER, framebuffer);
      glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
                                     GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, texture[1], 0);
      glReadPixels(0, 0, kWidth, kHeight, GL_RED_INTEGER, GL_UNSIGNED_INT, outputValues);
       
      Compute shader is very simple, imageLoad content from texture[0], and imageStore content to texture[1]. Does need to sync after dispatchCompute?
    • By Jonathan2006
      My question: is it possible to transform multiple angular velocities so that they can be reinserted as one? My research is below:
      // This works quat quaternion1 = GEQuaternionFromAngleRadians(angleRadiansVector1); quat quaternion2 = GEMultiplyQuaternions(quaternion1, GEQuaternionFromAngleRadians(angleRadiansVector2)); quat quaternion3 = GEMultiplyQuaternions(quaternion2, GEQuaternionFromAngleRadians(angleRadiansVector3)); glMultMatrixf(GEMat4FromQuaternion(quaternion3).array); // The first two work fine but not the third. Why? quat quaternion1 = GEQuaternionFromAngleRadians(angleRadiansVector1); vec3 vector1 = GETransformQuaternionAndVector(quaternion1, angularVelocity1); quat quaternion2 = GEQuaternionFromAngleRadians(angleRadiansVector2); vec3 vector2 = GETransformQuaternionAndVector(quaternion2, angularVelocity2); // This doesn't work //quat quaternion3 = GEQuaternionFromAngleRadians(angleRadiansVector3); //vec3 vector3 = GETransformQuaternionAndVector(quaternion3, angularVelocity3); vec3 angleVelocity = GEAddVectors(vector1, vector2); // Does not work: vec3 angleVelocity = GEAddVectors(vector1, GEAddVectors(vector2, vector3)); static vec3 angleRadiansVector; vec3 angularAcceleration = GESetVector(0.0, 0.0, 0.0); // Sending it through one angular velocity later in my motion engine angleVelocity = GEAddVectors(angleVelocity, GEMultiplyVectorAndScalar(angularAcceleration, timeStep)); angleRadiansVector = GEAddVectors(angleRadiansVector, GEMultiplyVectorAndScalar(angleVelocity, timeStep)); glMultMatrixf(GEMat4FromEulerAngle(angleRadiansVector).array); Also how do I combine multiple angularAcceleration variables? Is there an easier way to transform the angular values?
    • By dpadam450
      I have this code below in both my vertex and fragment shader, however when I request glGetUniformLocation("Lights[0].diffuse") or "Lights[0].attenuation", it returns -1. It will only give me a valid uniform location if I actually use the diffuse/attenuation variables in the VERTEX shader. Because I use position in the vertex shader, it always returns a valid uniform location. I've read that I can share uniforms across both vertex and fragment, but I'm confused what this is even compiling to if this is the case.
       
      #define NUM_LIGHTS 2
      struct Light
      {
          vec3 position;
          vec3 diffuse;
          float attenuation;
      };
      uniform Light Lights[NUM_LIGHTS];
       
       
    • By pr033r
      Hello,
      I have a Bachelor project on topic "Implenet 3D Boid's algorithm in OpenGL". All OpenGL issues works fine for me, all rendering etc. But when I started implement the boid's algorithm it was getting worse and worse. I read article (http://natureofcode.com/book/chapter-6-autonomous-agents/) inspirate from another code (here: https://github.com/jyanar/Boids/tree/master/src) but it still doesn't work like in tutorials and videos. For example the main problem: when I apply Cohesion (one of three main laws of boids) it makes some "cycling knot". Second, when some flock touch to another it scary change the coordination or respawn in origin (x: 0, y:0. z:0). Just some streng things. 
      I followed many tutorials, change a try everything but it isn't so smooth, without lags like in another videos. I really need your help. 
      My code (optimalizing branch): https://github.com/pr033r/BachelorProject/tree/Optimalizing
      Exe file (if you want to look) and models folder (for those who will download the sources):
      http://leteckaposta.cz/367190436
      Thanks for any help...

    • By Andrija
      I am currently trying to implement shadow mapping into my project , but although i can render my depth map to the screen and it looks okay , when i sample it with shadowCoords there is no shadow.
      Here is my light space matrix calculation
      mat4x4 lightViewMatrix; vec3 sun_pos = {SUN_OFFSET * the_sun->direction[0], SUN_OFFSET * the_sun->direction[1], SUN_OFFSET * the_sun->direction[2]}; mat4x4_look_at(lightViewMatrix,sun_pos,player->pos,up); mat4x4_mul(lightSpaceMatrix,lightProjMatrix,lightViewMatrix); I will tweak the values for the size and frustum of the shadow map, but for now i just want to draw shadows around the player position
      the_sun->direction is a normalized vector so i multiply it by a constant to get the position.
      player->pos is the camera position in world space
      the light projection matrix is calculated like this:
      mat4x4_ortho(lightProjMatrix,-SHADOW_FAR,SHADOW_FAR,-SHADOW_FAR,SHADOW_FAR,NEAR,SHADOW_FAR); Shadow vertex shader:
      uniform mat4 light_space_matrix; void main() { gl_Position = light_space_matrix * transfMatrix * vec4(position, 1.0f); } Shadow fragment shader:
      out float fragDepth; void main() { fragDepth = gl_FragCoord.z; } I am using deferred rendering so i have all my world positions in the g_positions buffer
      My shadow calculation in the deferred fragment shader:
      float get_shadow_fac(vec4 light_space_pos) { vec3 shadow_coords = light_space_pos.xyz / light_space_pos.w; shadow_coords = shadow_coords * 0.5 + 0.5; float closest_depth = texture(shadow_map, shadow_coords.xy).r; float current_depth = shadow_coords.z; float shadow_fac = 1.0; if(closest_depth < current_depth) shadow_fac = 0.5; return shadow_fac; } I call the function like this:
      get_shadow_fac(light_space_matrix * vec4(position,1.0)); Where position is the value i got from sampling the g_position buffer
      Here is my depth texture (i know it will produce low quality shadows but i just want to get it working for now):
      sorry because of the compression , the black smudges are trees ... https://i.stack.imgur.com/T43aK.jpg
      EDIT: Depth texture attachment:
      glTexImage2D(GL_TEXTURE_2D, 0,GL_DEPTH_COMPONENT24,fbo->width,fbo->height,0,GL_DEPTH_COMPONENT,GL_FLOAT,NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, fbo->depthTexture, 0);
  • Popular Now