• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.

Archived

This topic is now archived and is closed to further replies.

shadow_dancer

poylgon point ordering

1 post in this topic

i have an array of points and i want to create a polygon out of it. the array is in completely wrong order, so that you can neither create a trianglestrip or a trianglefan out of it. i have the following information: - the planes normal - each points world coordinates - each points texture uv coordinates, where the texture is a planar map. does anyone know a method to order the points so that they create a correct looking trianglestrip?
0

Share this post


Link to post
Share on other sites
Are the points all planar? (You suggest that they are since you say you have "the planes normal.)

In that case, you can break your problem into the following steps:

1) Find the convex hull around the arbitrarily arranged points. (more later on this). Here is some software that can be used to find the convex hull: http://www.geom.umn.edu/software/qhull/.

2) Triangulate the interior points to generate triangles on the interior of the polygon mesh. I suggest performing a Delauney triangulation, which generates the *nicest* triangles (e.g., triangles are as close to equilateral as possible). Here is some software that can be used to do delauney triangulation: http://www.cs.cmu.edu/~quake/triangle.html.

3) Run the triangles through a stripifying utility to get triangle strips. See developers\programming resources area at www.nvidia.com for stripifying code (Their NvTriStrip library).

A good textbook reference for the first two steps is the following:

"Computational Geometry" by M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, published by Springer, ISBN 3-540-61270-X. Its really a very good book and easy to read and follow. Try finding it in a library first before you consider buying it.

Now, in step one I suggested finding the convex hull first. This gives the required boundary conditions for triangulation to triangles in step 2. BUT, you may not want your mesh to have a convex boundary. You may want it to be concave, and you may want there to be holes in the middle. To do this without more a priori knowledge of the topology of the mesh is *very* challenging, and I can only suggest that you do a thorough web search on words like "mesh reconstruction" or "topology reconstruction." You *can* always go through and specify the correct, concave boundary and interior holes by hand, just by visually recognizing the boundary, and then send that to the delauney triangulation. It would require that your delauney triangulation code be able to handle concave boundaries----not all do.

If the points are not planar, then at least you can project the points into a plane to define a projected version of the mesh. Really, you''re getting mesh topology here. Once you have the mesh connectivity in terms of a tri strip, go back and use the original unprojected (x, y, z) coordinates to get your tristripped, nonplanar mesh. It is sometimes tricky to find the best plane to project to, since if you project to the wrong plane the mesh will be folded on top of itself, making it impossible to find correct convex hull and tristrips. (You can find a 3D convex hull, but the triangulation is easier if you project.)

Hope this helps a bit!


Graham Rhodes
Senior Scientist
Applied Research Associates, Inc.
0

Share this post


Link to post
Share on other sites