• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.

Archived

This topic is now archived and is closed to further replies.

FenrisWolf

2D arc question

7 posts in this topic

Hi. I''m terrible at physics, but recently I had a fairly nice idea about a game and I need physics to do it, so here it goes: I want to simulate a cannon (or something similar) that launches a bullet, and depending on the inicial velocity and the angle (the user chooses), it''ll fly in an arc-pattern and hit the ground. How can I do that? Code in Visual Basic or C/C++ is very appreciated! Thanks in advance "Nobody is perfect. I''''m a nobody. Therefore, I''''m perfect!" Nah, not really...
0

Share this post


Link to post
Share on other sites
Well, here is a very simple way to implement this.

First, have two separate velocity components: xv for the horizontal velocity, and yv for the vertical velocity. Also add a constant to the mix, and call it g - this will be the acceleration of gravity (since the y-coordinate plane increases as it goes downwards on computer screens, make this a positive number).

Now, when a projectile flies through the air, the x velocity remains constant (assuming no air resistance/wind). Basically, every time you go through your main game loop, where you calculate new positions, do something like this:

yv = yv + g;

This updates the y velocity. To then update the positions, do something like this:

x = x + xv;
y = y + yv;

All that needs to be done to make this simulate a projectile is to give an object an initial velocity at some angle other than 90 degrees.


Got Slack?
Commander M
0

Share this post


Link to post
Share on other sites
Thanks! I got what you said, but I still don''t understand how the arc would be relative to an angle. Sorry if I''m being too annoying
0

Share this post


Link to post
Share on other sites
When you have initial velocity v0 and angle alpha, then velocity
along x axis is vx = v0*sin(alpha) and along y axis
vy = v0*cos(alpha)+g*t. Then as CmndrM says,

x = x + vx;
vy = vy + g;
y = y + vy;

The sign of g depends on orientation of y axis. If y values increase from bottom to top then g is negative. Otherwise g is positive.

0

Share this post


Link to post
Share on other sites
Yeah, sorry, I forgot to mention the whole basic vector thing

Vectors are your friend.


Got Slack?
Commander M
0

Share this post


Link to post
Share on other sites
quote:
Original post by Grudzio
When you have initial velocity v0 and angle alpha, then velocity
along x axis is vx = v0*sin(alpha) and along y axis
vy = v0*cos(alpha)+g*t. Then as CmndrM says,

x = x + vx;
vy = vy + g;
y = y + vy;

The sign of g depends on orientation of y axis. If y values increase from bottom to top then g is negative. Otherwise g is positive.




Obviously the alignment of an arbitrary coordinate system is itself arbitrary. However, going by your earlier post, one correction is required above:

vx = v0*cos(alpha)
vy = v0*sin(alpha)

are the correct equations for initial components of velocity given a speed of projectile v0 and angle of inclination alpha (measured from the ground up).

Cheers,

Timkin
0

Share this post


Link to post
Share on other sites