• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By codelyoko373
      I wasn't sure if this would be the right place for a topic like this so sorry if it isn't.
      I'm currently working on a project for Uni using FreeGLUT to make a simple solar system simulation. I've got to the point where I've implemented all the planets and have used a Scene Graph to link them all together. The issue I'm having with now though is basically the planets and moons orbit correctly at their own orbit speeds.
      I'm not really experienced with using matrices for stuff like this so It's likely why I can't figure out how exactly to get it working. This is where I'm applying the transformation matrices, as well as pushing and popping them. This is within the Render function that every planet including the sun and moons will have and run.
      if (tag != "Sun") { glRotatef(orbitAngle, orbitRotation.X, orbitRotation.Y, orbitRotation.Z); } glPushMatrix(); glTranslatef(position.X, position.Y, position.Z); glRotatef(rotationAngle, rotation.X, rotation.Y, rotation.Z); glScalef(scale.X, scale.Y, scale.Z); glDrawElements(GL_TRIANGLES, mesh->indiceCount, GL_UNSIGNED_SHORT, mesh->indices); if (tag != "Sun") { glPopMatrix(); } The "If(tag != "Sun")" parts are my attempts are getting the planets to orbit correctly though it likely isn't the way I'm meant to be doing it. So I was wondering if someone would be able to help me? As I really don't have an idea on what I would do to get it working. Using the if statement is truthfully the closest I've got to it working but there are still weird effects like the planets orbiting faster then they should depending on the number of planets actually be updated/rendered.
    • By Jens Eckervogt
      Hello everyone, 
      I have problem with texture
      using System; using OpenTK; using OpenTK.Input; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL4; using System.Drawing; using System.Reflection; namespace Tutorial_05 { class Game : GameWindow { private static int WIDTH = 1200; private static int HEIGHT = 720; private static KeyboardState keyState; private int vaoID; private int vboID; private int iboID; private Vector3[] vertices = { new Vector3(-0.5f, 0.5f, 0.0f), // V0 new Vector3(-0.5f, -0.5f, 0.0f), // V1 new Vector3(0.5f, -0.5f, 0.0f), // V2 new Vector3(0.5f, 0.5f, 0.0f) // V3 }; private Vector2[] texcoords = { new Vector2(0, 0), new Vector2(0, 1), new Vector2(1, 1), new Vector2(1, 0) }; private int[] indices = { 0, 1, 3, 3, 1, 2 }; private string vertsrc = @"#version 450 core in vec3 position; in vec2 textureCoords; out vec2 pass_textureCoords; void main(void) { gl_Position = vec4(position, 1.0); pass_textureCoords = textureCoords; }"; private string fragsrc = @"#version 450 core in vec2 pass_textureCoords; out vec4 out_color; uniform sampler2D textureSampler; void main(void) { out_color = texture(textureSampler, pass_textureCoords); }"; private int programID; private int vertexShaderID; private int fragmentShaderID; private int textureID; private Bitmap texsrc; public Game() : base(WIDTH, HEIGHT, GraphicsMode.Default, "Tutorial 05 - Texturing", GameWindowFlags.Default, DisplayDevice.Default, 4, 5, GraphicsContextFlags.Default) { } protected override void OnLoad(EventArgs e) { base.OnLoad(e); CursorVisible = true; GL.GenVertexArrays(1, out vaoID); GL.BindVertexArray(vaoID); GL.GenBuffers(1, out vboID); GL.BindBuffer(BufferTarget.ArrayBuffer, vboID); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(vertices.Length * Vector3.SizeInBytes), vertices, BufferUsageHint.StaticDraw); GL.GenBuffers(1, out iboID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, iboID); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(indices.Length * sizeof(int)), indices, BufferUsageHint.StaticDraw); vertexShaderID = GL.CreateShader(ShaderType.VertexShader); GL.ShaderSource(vertexShaderID, vertsrc); GL.CompileShader(vertexShaderID); fragmentShaderID = GL.CreateShader(ShaderType.FragmentShader); GL.ShaderSource(fragmentShaderID, fragsrc); GL.CompileShader(fragmentShaderID); programID = GL.CreateProgram(); GL.AttachShader(programID, vertexShaderID); GL.AttachShader(programID, fragmentShaderID); GL.LinkProgram(programID); // Loading texture from embedded resource texsrc = new Bitmap(Assembly.GetEntryAssembly().GetManifestResourceStream("Tutorial_05.example.png")); textureID = GL.GenTexture(); GL.BindTexture(TextureTarget.Texture2D, textureID); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMagFilter, (int)All.Linear); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMinFilter, (int)All.Linear); GL.TexImage2D(TextureTarget.Texture2D, 0, PixelInternalFormat.Rgba, texsrc.Width, texsrc.Height, 0, PixelFormat.Bgra, PixelType.UnsignedByte, IntPtr.Zero); System.Drawing.Imaging.BitmapData bitmap_data = texsrc.LockBits(new Rectangle(0, 0, texsrc.Width, texsrc.Height), System.Drawing.Imaging.ImageLockMode.ReadOnly, System.Drawing.Imaging.PixelFormat.Format32bppRgb); GL.TexSubImage2D(TextureTarget.Texture2D, 0, 0, 0, texsrc.Width, texsrc.Height, PixelFormat.Bgra, PixelType.UnsignedByte, bitmap_data.Scan0); texsrc.UnlockBits(bitmap_data); GL.Enable(EnableCap.Texture2D); GL.BufferData(BufferTarget.TextureBuffer, (IntPtr)(texcoords.Length * Vector2.SizeInBytes), texcoords, BufferUsageHint.StaticDraw); GL.BindAttribLocation(programID, 0, "position"); GL.BindAttribLocation(programID, 1, "textureCoords"); } protected override void OnResize(EventArgs e) { base.OnResize(e); GL.Viewport(0, 0, ClientRectangle.Width, ClientRectangle.Height); } protected override void OnUpdateFrame(FrameEventArgs e) { base.OnUpdateFrame(e); keyState = Keyboard.GetState(); if (keyState.IsKeyDown(Key.Escape)) { Exit(); } } protected override void OnRenderFrame(FrameEventArgs e) { base.OnRenderFrame(e); // Prepare for background GL.Clear(ClearBufferMask.ColorBufferBit); GL.ClearColor(Color4.Red); // Draw traingles GL.EnableVertexAttribArray(0); GL.EnableVertexAttribArray(1); GL.BindVertexArray(vaoID); GL.UseProgram(programID); GL.BindBuffer(BufferTarget.ArrayBuffer, vboID); GL.VertexAttribPointer(0, 3, VertexAttribPointerType.Float, false, 0, IntPtr.Zero); GL.ActiveTexture(TextureUnit.Texture0); GL.BindTexture(TextureTarget.Texture3D, textureID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, iboID); GL.DrawElements(BeginMode.Triangles, indices.Length, DrawElementsType.UnsignedInt, 0); GL.DisableVertexAttribArray(0); GL.DisableVertexAttribArray(1); SwapBuffers(); } protected override void OnClosed(EventArgs e) { base.OnClosed(e); GL.DeleteVertexArray(vaoID); GL.DeleteBuffer(vboID); } } } I can not remember where do I add GL.Uniform2();
    • By Jens Eckervogt
      Hello everyone
      For @80bserver8 nice job - I have found Google search. How did you port from Javascript WebGL to C# OpenTK.?
      I have been searched Google but it shows f***ing Unity 3D. I really want know how do I understand I want start with OpenTK But I want know where is porting of Javascript and C#?
    • By mike44
      I draw in a OpenGL framebuffer. All is fine but it eats FPS (frames per second), hence I wonder if I could execute the framebuffer drawing only every 5-10th loop or so?
      Many thanks
    • By cebugdev
      hi all,
      how to implement this type of effect ? 
      Also what is this effect called? this is considered volumetric lighting?
      what are the options of doing this? 
      a. billboard? but i want this to have the 3D effect that when we rotate the camera we can still have that 3d feel.
      b. a transparent 3d mesh? and we can animate it as well?
      need your expert advise.
      2. how to implement things like fireball projectile (shot from a monster) (billboard texture or a 3d mesh)?
      Note: im using OpenGL ES 2.0 on mobile. 
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL Manually calculating projected texture coordinates

This topic is 3139 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi all, I'm trying to manually calculate the texture coordinates to project a texture onto a mesh. I'm writing code for the iPhone (OpenGL ES 1.1) device, for those of you that don't know the glTexGen functions are not part of the spec, which means you can't simply do the old GL_EYE_LINEAR business and be done with it. Now, the thing that is making this interesting is that the iPhone has a "known limitation" and only does perspective correct interpolation for the S and T coordinates, which leaves me with a right mess. My original plan was to setup the OpenGL texture matrix with the bias+viewmatrix of the projector, and then provide the mesh vertices as the coordinates to be transformed, this requires no CPU processing of vertices and works beautifully on the simulator (which uses the desktop GL driver which DOES do the correct interpolation of STRQ) but when running on the device any reasonably sized, non aligned triangles cause the lack of Q-coord awareness to be blatantly visible. The simple solution is to capitalize on the per-vertex Q-coord division for S and T, and increase tessellation of the mesh, this works, but I'm worried it's going to cause unnecessary burden on the artist and also affect performance, additionally it's never going to be 100% correct. So, my next move was to try and calculate the texture coordinates on the CPU, but for some reason, I can't seem to get it to work, none of the projections come out looking remotely correct, I was wondering if anyone had any code from a software renderer or similar to do the same thing? My code:
            VECTOR4 tmp;
            MATRIX m;
            MatrixMultiply(m, shadowMatrix, modelMatrix);
            for(size_t i=0; i<gb.getVertexCount(); ++i)
                VECTOR3& vtx = *((VECTOR3*)gb.getVertexBufferPtr(i*gb.getVertexStride()));
                tmp.x = vtx.x;
                tmp.y = vtx.y;
                tmp.z = vtx.z;
                tmp.w = 1.0f;
                MatrixVec4Multiply(tmp, tmp, m);
                tmp.x = tmp.x/tmp.w;
                tmp.y = tmp.y/tmp.w;
                tmp.z = tmp.z/tmp.w;
                projTexCoords = tmp;

I know that shadowMatrix and modelMatrix are 100% correct as they are unchanged and work for the non-cpu coord generation.

Share this post

Link to post
Share on other sites
I think the only different thing I do is scale and offset the projection matrix by half (because the projection matrix will place the origin at the center of the screen, but the texture origin is in the corner).

I assume "shadow" is your projection matrix?
Also, is "modelMatrix" a local-to-world matrix, or a local-to-view matrix?
TransformedPos = Pos * LocalToView

Proj = Camera.Projection
Proj.Scale ( 0.5, 0.5, 1 )
Proj.Translate( 0.5, 0.5, 0 );

UV = TransformedPos * Proj

Share this post

Link to post
Share on other sites
Hi Hodgman,
shadowMatrix = Bias * Proj * View


MatrixMultiply(shadowMatrix, shadowMatrix, shadowBias);
// shadow bias is your projection typical scale by 0.5 and translate by 0.5 matrix

modelMatrix is the object's local->world transform matrix.

I'm pretty stumped on this one.

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement