• Advertisement
Sign in to follow this  

Solving for Theta

This topic is 2912 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi, So, given the formula for uneven ground here, I'm trying to solve for theta. Bear with me; I'm young yet. The result is not working properly (I've done something wrong somewhere): d = v*cos(θ)/g(v*sin(θ) + ((v*sin(θ))2+2*g*y0)0.5) => dg = v*cos(θ)*(v*sin(θ) + ((v*sin(θ))2+2*g*y0)0.5) => dg = v2*sin(θ)*cos(θ) + v*cos(θ)*((v*sin(θ))2+2*g*y0)0.5) => dg - v2*sin(θ)*cos(θ) = v*cos(θ)*((v*sin(θ))2+2*g*y0)0.5) => d2g2 - 2*d*g*v2*sin(θ)*cos(θ)+v4*sin2(θ)*cos2(θ) = v2cos2(θ)*(v2sin2(θ)+2*g*y0) => d2g2 - 2*d*g*v2*sin(θ)*cos(θ)+v4*sin2(θ)*cos2(θ) = v4*sin2(θ)*cos2(θ)+2*g*v2*y0*cos2(θ) => d2g2 - 2*d*g*v2*sin(θ)*cos(θ) = 2*g*v2*y0*cos2(θ) => g*(d2g-2*d*v2*sin(θ)*cos(θ)) = g*(2*v2*y0*cos2(θ)) => d2g - 2*d*v2*sin(θ)*cos(θ) = 2*v2*y0*cos2(θ) => d2g - 2*d*v2*sin(θ)*cos(θ) = 2*v2*y0*cos2(θ) => d2g = 2*v2*y0*cos2(θ) + 2*d*v2*sin(θ)*cos(θ) => d2g = 2*v2*(y0*cos2(θ)+d*sin(θ)*cos(θ)) => (d2g)/(2*v2) = y0*cos2(θ)+d*sin(θ)*cos(θ) => (d2g)/(2*v2) = y0*cos2(θ)+2*(1/2)*d*sin(θ)*cos(θ) => (d2g)/(2*v2) = y0*((1/2)*(1+cos(2θ)))+(1/2)*d*sin(2θ) => (d2g)/(v2) = y0*(1+cos(2θ))+d*sin(2θ) => (d2g)/(v2) = y0 + y0*cos(2θ) + d*sin(2θ) => ((d2g)/(v2)) - y0 = y0*cos(2θ) + d*sin(2θ) => Modifying this equivalence to handle equations of the y=a*sin(θ)+b*cos(θ) gives: => ((d2g)/(v2)) - y0 = (y02+d2)0.5sin(2θ+45°) => (d2g-2*v2y0)/(v2) = (y02+d2)0.5sin(2θ+45°) => (d2g-2*v2y0)/(v2(y02+d2)0.5) = sin(2θ+45°) => sin(2θ+45°) = (d2g-2*v2y0)/(v2(y02+d2)0.5) => 2θ+45° = arcsin( (d2g-2*v2y0)/(v2(y02+d2)0.5) ) => 2θ = arcsin( (d2g-2*v2y0)/(v2(y02+d2)0.5) )-45° => 2θ = arcsin( (d2g-2*v2y0)/(v2(y02+d2)0.5) )-π/4 => θ = 1/2arcsin( (d2g-2*v2y0)/(v2(y02+d2)0.5) )-π/8 Help? Thanks, -G

Share this post


Link to post
Share on other sites
Advertisement
Sign in to follow this  

  • Advertisement