• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By cozzie
      Hi all,
      As a part of the debug drawing system in my engine,  I want to add support for rendering simple text on screen  (aka HUD/ HUD style). From what I've read there are a few options, in short:
      1. Write your own font sprite renderer
      2. Using Direct2D/Directwrite, combine with DX11 rendertarget/ backbuffer
      3. Use an external library, like the directx toolkit etc.
      I want to go for number 2, but articles/ documentation confused me a bit. Some say you need to create a DX10 device, to be able to do this, because it doesn't directly work with the DX11 device.  But other articles tell that this was 'patched' later on and should work now.
      Can someone shed some light on this and ideally provide me an example or article on  how to set this up?
      All input is appreciated.
    • By stale
      I've just started learning about tessellation from Frank Luna's DX11 book. I'm getting some very weird behavior when I try to render a tessellated quad patch if I also render a mesh in the same frame. The tessellated quad patch renders just fine if it's the only thing I'm rendering. This is pictured below:
      However, when I attempt to render the same tessellated quad patch along with the other entities in the scene (which are simple triangle-lists), I get the following error:

      I have no idea why this is happening, and google searches have given me no leads at all. I use the following code to render the tessellated quad patch:
      ID3D11DeviceContext* dc = GetGFXDeviceContext(); dc->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST); dc->IASetInputLayout(ShaderManager::GetInstance()->m_JQuadTess->m_InputLayout); float blendFactors[] = { 0.0f, 0.0f, 0.0f, 0.0f }; // only used with D3D11_BLEND_BLEND_FACTOR dc->RSSetState(m_rasterizerStates[RSWIREFRAME]); dc->OMSetBlendState(m_blendStates[BSNOBLEND], blendFactors, 0xffffffff); dc->OMSetDepthStencilState(m_depthStencilStates[DSDEFAULT], 0); ID3DX11EffectTechnique* activeTech = ShaderManager::GetInstance()->m_JQuadTess->Tech; D3DX11_TECHNIQUE_DESC techDesc; activeTech->GetDesc(&techDesc); for (unsigned int p = 0; p < techDesc.Passes; p++) { TerrainVisual* terrainVisual = (TerrainVisual*)entity->m_VisualComponent; UINT stride = sizeof(TerrainVertex); UINT offset = 0; GetGFXDeviceContext()->IASetVertexBuffers(0, 1, &terrainVisual->m_VB, &stride, &offset); Vector3 eyePos = Vector3(cam->m_position); Matrix rotation = Matrix::CreateFromYawPitchRoll(entity->m_rotationEuler.x, entity->m_rotationEuler.y, entity->m_rotationEuler.z); Matrix model = rotation * Matrix::CreateTranslation(entity->m_position); Matrix view = cam->GetLookAtMatrix(); Matrix MVP = model * view * m_ProjectionMatrix; ShaderManager::GetInstance()->m_JQuadTess->SetEyePosW(eyePos); ShaderManager::GetInstance()->m_JQuadTess->SetWorld(model); ShaderManager::GetInstance()->m_JQuadTess->SetWorldViewProj(MVP); activeTech->GetPassByIndex(p)->Apply(0, GetGFXDeviceContext()); GetGFXDeviceContext()->Draw(4, 0); } dc->RSSetState(0); dc->OMSetBlendState(0, blendFactors, 0xffffffff); dc->OMSetDepthStencilState(0, 0); I draw my scene by looping through the list of entities and calling the associated draw method depending on the entity's "visual type":
      for (unsigned int i = 0; i < scene->GetEntityList()->size(); i++) { Entity* entity = scene->GetEntityList()->at(i); if (entity->m_VisualComponent->m_visualType == VisualType::MESH) DrawMeshEntity(entity, cam, sun, point); else if (entity->m_VisualComponent->m_visualType == VisualType::BILLBOARD) DrawBillboardEntity(entity, cam, sun, point); else if (entity->m_VisualComponent->m_visualType == VisualType::TERRAIN) DrawTerrainEntity(entity, cam); } HR(m_swapChain->Present(0, 0)); Any help/advice would be much appreciated!
    • By KaiserJohan
      Am trying a basebones tessellation shader and getting unexpected result when increasing the tessellation factor. Am rendering a group of quads and trying to apply tessellation to them.
      OutsideTess = (1,1,1,1), InsideTess= (1,1)

      OutsideTess = (1,1,1,1), InsideTess= (2,1)

      I expected 4 triangles in the quad, not two. Any idea of whats wrong?
      struct PatchTess { float mEdgeTess[4] : SV_TessFactor; float mInsideTess[2] : SV_InsideTessFactor; }; struct VertexOut { float4 mWorldPosition : POSITION; float mTessFactor : TESS; }; struct DomainOut { float4 mWorldPosition : SV_POSITION; }; struct HullOut { float4 mWorldPosition : POSITION; }; Hull shader:
      PatchTess PatchHS(InputPatch<VertexOut, 3> inputVertices) { PatchTess patch; patch.mEdgeTess[ 0 ] = 1; patch.mEdgeTess[ 1 ] = 1; patch.mEdgeTess[ 2 ] = 1; patch.mEdgeTess[ 3 ] = 1; patch.mInsideTess[ 0 ] = 2; patch.mInsideTess[ 1 ] = 1; return patch; } [domain("quad")] [partitioning("fractional_odd")] [outputtopology("triangle_ccw")] [outputcontrolpoints(4)] [patchconstantfunc("PatchHS")] [maxtessfactor( 64.0 )] HullOut hull_main(InputPatch<VertexOut, 3> verticeData, uint index : SV_OutputControlPointID) { HullOut ret; ret.mWorldPosition = verticeData[index].mWorldPosition; return ret; }  
      Domain shader:
      [domain("quad")] DomainOut domain_main(PatchTess patchTess, float2 uv : SV_DomainLocation, const OutputPatch<HullOut, 4> quad) { DomainOut ret; const float MipInterval = 20.0f; ret.mWorldPosition.xz = quad[ 0 ].mWorldPosition.xz * ( 1.0f - uv.x ) * ( 1.0f - uv.y ) + quad[ 1 ].mWorldPosition.xz * uv.x * ( 1.0f - uv.y ) + quad[ 2 ].mWorldPosition.xz * ( 1.0f - uv.x ) * uv.y + quad[ 3 ].mWorldPosition.xz * uv.x * uv.y ; ret.mWorldPosition.y = quad[ 0 ].mWorldPosition.y; ret.mWorldPosition.w = 1; ret.mWorldPosition = mul( gFrameViewProj, ret.mWorldPosition ); return ret; }  
      Any ideas what could be wrong with these shaders?
    • By simco50
      I've stumbled upon Urho3D engine and found that it has a really nice and easy to read code structure.
      I think the graphics abstraction looks really interesting and I like the idea of how it defers pipeline state changes until just before the draw call to resolve redundant state changes.
      This is done by saving the state changes (blendEnabled/SRV changes/RTV changes) in member variables and just before the draw, apply the actual state changes using the graphics context.
      It looks something like this (pseudo):
      void PrepareDraw() { if(renderTargetsDirty) { pD3D11DeviceContext->OMSetRenderTarget(mCurrentRenderTargets); renderTargetsDirty = false } if(texturesDirty) { pD3D11DeviceContext->PSSetShaderResourceView(..., mCurrentSRVs); texturesDirty = false } .... //Some more state changes } This all looked like a great design at first but I've found that there is one big issue with this which I don't really understand how it is solved in their case and how I would tackle it.
      I'll explain it by example, imagine I have two rendertargets: my backbuffer RT and an offscreen RT.
      Say I want to render my backbuffer to the offscreen RT and then back to the backbuffer (Just for the sake of the example).
      You would do something like this:
      //Render to the offscreen RT pGraphics->SetRenderTarget(pOffscreenRT->GetRTV()); pGraphics->SetTexture(diffuseSlot, pDefaultRT->GetSRV()) pGraphics->DrawQuad() pGraphics->SetTexture(diffuseSlot, nullptr); //Remove the default RT from input //Render to the default (screen) RT pGraphics->SetRenderTarget(nullptr); //Default RT pGraphics->SetTexture(diffuseSlot, pOffscreenRT->GetSRV()) pGraphics->DrawQuad(); The problem here is that the second time the application loop comes around, the offscreen rendertarget is still bound as input ShaderResourceView when it gets set as a RenderTargetView because in Urho3D, the state of the RenderTargetView will always be changed before the ShaderResourceViews (see top code snippet) even when I set the SRV to nullptr before using it as a RTV like above causing errors because a resource can't be bound to both input and rendertarget.
      What is usually the solution to this?
    • By MehdiUBP
      I wrote a MatCap shader following this idea:
      Given the image representing the texture, we compute the sample point by taking the dot product of the vertex normal and the camera position and remapping this to [0,1].
      This seems to work well when I look straight at an object with this shader. However, in cases where the camera points slightly on the side, I can see the texture stretch a lot.
      Could anyone give me a hint as how to get a nice matcap shader ?
      Here's what I wrote:
      Shader "Unlit/Matcap"
              _MainTex ("Texture", 2D) = "white" {}
              Tags { "RenderType"="Opaque" }
              LOD 100
                  #pragma vertex vert
                  #pragma fragment frag
                  // make fog work
                  #include "UnityCG.cginc"
                  struct appdata
                      float4 vertex : POSITION;
                      float3 normal : NORMAL;
                  struct v2f
                      float2 worldNormal : TEXCOORD0;
                      float4 vertex : SV_POSITION;
                  sampler2D _MainTex;            
                  v2f vert (appdata v)
                      v2f o;
                      o.vertex = UnityObjectToClipPos(v.vertex);
                      o.worldNormal = mul((float3x3)UNITY_MATRIX_V, UnityObjectToWorldNormal(v.normal)).xy*0.3 + 0.5;  //UnityObjectToClipPos(v.normal)*0.5 + 0.5;
                      return o;
                  fixed4 frag (v2f i) : SV_Target
                      // sample the texture
                      fixed4 col = tex2D(_MainTex, i.worldNormal);
                      // apply fog
                      return col;
  • Advertisement
  • Advertisement
Sign in to follow this  

DX11 [HLSL/DX9] Managing multipass rendering data

This topic is 2767 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Let's assume I have an effect with a single technique in it that contains two or more passes. The passes are rendered one by each other. Is it possible to somehow supply the second pass with the output data from the first pass?

All I'm trying to do at the moment is to blend results of multiple shaders. I can imagine using additional render targets to store color values in the first pixel shader pass and reuse them in the second one. But how could I achieve something similar with vertex shaders?

I've run a very simple test with a single white triangle on the scene. Shader code is included below (with description of what I expect):

//this changes color to violet
float4 mainPS() : COLOR {
return float4(1.0, 0, 1.0, 1.0);

//I'd expect 'c' variable to be the output of previous pass (violet).
//If so, the 'c' returned here should be red (ra = 1, gb = 0).
//It's unfortunately NOT like that!
float4 mainPS2(float4 c : COLOR) : COLOR {
c.g=1; c.b=0;
return c;

technique technique0 {
pass p0 {
CullMode = None;
VertexShader = compile vs_3_0 mainVS();
PixelShader = compile ps_3_0 mainPS();

pass p1 {
CullMode = None;
VertexShader = compile vs_3_0 mainVS2();
PixelShader = compile ps_3_0 mainPS2();

I know about Supershaders, but it's rather unsatisfactory solution. Fragment linker is deprecated and no longer supported in DX10. Has anything changed about the issue in DX10 or DX11. Is it any easier there than in DX9?

Share this post

Link to post
Share on other sites
The pass notation in the effects framework doesn't actually do anything on its own. All it does is say "hey, you've got multiple passes defined in here" and gives you an interface for rendering a pass. Feeding outputs from one pass to another or anything like that has to be totally handled by you in your shader code or in your application code.

In your case, probably the simplest thing to do would be to have your mainPS2 function call the mainPS function to obtain the output. Otherwise you would have to either render the first pass to a render target and sample that in your second pass, or you'd have to use the fixed-function blending states.

Share this post

Link to post
Share on other sites
Thanks for your response.

OK, so actually it only confirms an assumption that I can't do what I want ;]

But you say I could call mainPS2(). What if I had a custom-made system that could dynamically build a new pixel shader from such chained calls mainPS1, mainPS2, ..., mainPSn. Output from previous would feed next one, etc. Do you think it would do the job well?

One thing that seems poor is the need to recompile effect, when the sequence of pixel shaders changes. Anyway, as far as I can imagine it IS also the case, when dealing with super-shaders or similar.

Share this post

Link to post
Share on other sites
Yeah that doesn't sound unreasonable. It's true that you would have to compile many permutations, but this is very common among commercial games. The alternative to compiling many permutations is to use runtime dynamic branching, which has performance implications.

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement