# Is this equation solvable?

This topic is 2778 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

## Recommended Posts

Hello folks,

I'm supposed to solve the equation

k * (cos(x)^2 - sin(x)^2) = sin(x)^(2-e)

for x. k and e are symbolic constants.

Can you tell me if this is possible?

Thanks a lot!

##### Share on other sites
Quote:
 Original post by DesperadoHello folks,I'm supposed to solve the equationk * (cos(x)^2 - sin(x)^2) = sin(x)^(2-e)for x. k and e are symbolic constants.

What is the variable you are solving for?

##### Share on other sites
sorry made a mistake, but use the idenitity

cos^2 + sin^2 = 1

##### Share on other sites
Unfortunately for a case like this (mainly because of the constant in the exponent of the sine function), you will need to use an approximating method like Newton's.

This method zeroes in on an approximate answer to f(x) = 0. So in this case in order to find an x that satisfies a(x) = b(x), we find an x that satisfies f(x) = 0 = a(x) - b(x)

f(x) = sin(x)^(2-e) - k * (cos(x)^2 - sin(x)^2)

f'(x) = (2-e)cos(x)sin(x)^(1-e) + 4ksin(x)cos(x))

Make an initial guess. Best to use a graphing calculator or software of some kind to get an idea of where f(x) = 0, make your initial guess x_0, then continue improving your guess using this formula:

x_(n+1) = x_n - f(x_n) / f'(x_n)

##### Share on other sites
@alvaro: He's solving for x.

You can transform the problem into two easier-looking problems. First you'd solve

s^(2-e) + 2 k s^2 - k = 0

for s, and then

sin(x) = s

for x.

The second of these is easy, so we just need to worry about the first.

How easy or hard it is to solve depends entirely on what 'e' is. If 2-e is a positive integer less than five, closed-form solutions are possible (0 <= e <= 2 are the easiest cases of course; then it's quadratic). If e is noninteger (or worse, irrational), I doubt there's a closed-form solution.

That said, closed-form solutions are overrated IMO. One nice thing about the polynomial you've got there is that there are nice root-finders that are guaranteed to return all the roots of polynomials.

Newton's method is also a (fast, easy) option, though you don't generally have global convergence guarantees.

Personally, if using Newton's method, I'd actually solve the related system of equations,

k * (c^2 - s^2) - s^(2-e) = 0
s^2 + c^2 - 1 = 0

for s and c. Then you can recover 'x' with a two-argument arctangent. The Jacobian of this system, by the way, is,
[ 2 k c    (-2 k - 2 + e) s ][ 2 c      2 s              ]

(which you'll need for Newton's method).

##### Share on other sites
Quote:
 Original post by Emergent@alvaro: He's solving for x.

Oh, I think I misread the OP.

##### Share on other sites
Folks,

Please review the Forum FAQ discussion of homework policy for this forum. I know that the way people learn has evolved thanks to the Internet, and lately I have been more tolerant of people asking this sort of question as a result. That said, please do be careful in your replies. I really don't want to see detailed answers that someone could copy/plagiarize and turn in as their own work. Offer advice and hints/suggestions, that's fine.

Thank you.

##### Share on other sites

And no, this was not a homework assignment.

##### Share on other sites
Is e small? If so, you might want to solve it for e=0, then use that as your initial guess for the iterative method you use (like Newtons method mentioned above).

Wolfram Alpha provided closed form formulas for the solutions when e=0, but I can't seem to get the links to work right. You can just go there:
http://www.wolframalpha.com/

and type in:
k * (cos(x)^2 - sin(x)^2) = sin(x)^2

and it will give you the solutions.

##### Share on other sites
Quote:
 Original post by Maze Master[...]Wolfram Alpha provided closed form formulas for the solutions when e=0, but I can't seem to get the links to work right. You can just go there:http://www.wolframalpha.com/and type in:k * (cos(x)^2 - sin(x)^2) = sin(x)^2and it will give you the solutions.

That one you can solve by hand: Substitute cos(x)^2 = 1 - sin(x)^2, solve the equation treating sin(x) as the variable, and then take arcsin at the end.

1. 1
Rutin
23
2. 2
3. 3
JoeJ
20
4. 4
5. 5

• 29
• 40
• 23
• 13
• 13
• ### Forum Statistics

• Total Topics
631740
• Total Posts
3001959
×