Sign in to follow this  
kimi

OpenGL OpenGL in 10 days !?!?!

Recommended Posts

Hi all,

As the topic says I really want to get the hang of OpenGL in 10 days. I am a newbie but trying to understand OpenGL for some months now. However I do not seem to get it and not confident to write program from scratch.

For now I want to get something working in OpenGL 2 and then move on to GLSL for my final project in the university.

Nehe tutorial ? or what resources on internet I should follow. I have ordered OpenGL superbible 5th edition from amazon so it should be in my hands in 4 days but I would like to know how you guys learned OpenGL programming ?

I want learn how to handle your own matrices ???, how does modeview matrix actually work. How to render and move things in 3D. I do not think I completely understand it TBH.

Please help

Share this post


Link to post
Share on other sites
its not going to be 10 days but rather at least a year:) (or more, from personal experience)
you might read the bible 5th edition in a month or so, but that's unlikely and even after reading you'll have to practice a LOT until you get comfortable with it and deal with your own ideas.
even after doing the aforementioned practice you'll likely run into lot of problems, that usually will come from not being experienced enough.
to add, if you aren't comfortable with C++ than it will likely take much longer time to accomplish this.

I'm not trying to persuade about don't start to learn OpenGL, but I'd like to emphasise that it will take a long-long time to get to the end of it

Share this post


Link to post
Share on other sites
NeHe is probably one of the faster ways to get something up and running, and it shouldn't take too long to make some working prototypes.

Actually completing a more advanced game, or learning all the internals, will take a long time. I wouldn't recommend starting with learning the math if you want to see quick results, unless you already have a very solid university math background.

Share this post


Link to post
Share on other sites
[quote name='playstation' timestamp='1302883778' post='4798822']
I want learn how to handle your own matrices ???, how does modeview matrix actually work. How to render and move things in 3D. I do not think I completely understand it TBH.
[/quote]

Two simplifications:
A matrix describes a coordinate system, the columns are x,y,z and origin. That's all there is to it (unless you add scaling or shearing). Don't worry about mathematical details of what happens when you multiply, just think "M = A*B" means "apply transformations in A after applying transformations in B". The result can still be directly read as coordinate system.

The mysterious w-coordinate on vectors can be thought of like this: w = 0 -> direction vector, w = 1 -> position vector (yes, it applies to matrices, the axes have w=0, the position/translation has w=1). If you do the math yourself you will see how it removes the translation part when multiplying with a matrix and when you look at GLs lighting model you will see how it makes the difference between a point light and a directional light.


More bla:
OpenGL is actually hiding stuff in a way that is both convenient and confusing. glRotate isn't magic, it just creates a rotationMatrix and does modelview = rotation * modelview. Same with glTranslate. D3D forces you to do it yourself, so you can't ignore what really happens. Seems more tedious, but ignorance isn't always bliss (look at the kind of questions arising from trying to achieve everything with these to glCursed functions). You want to forget about them if you handle your matrices yourself. If you don't move the point of view (or "camera", though technically such a thing doesn't exist) you can just directly glLoadMatrix your objects matrix and render it. Else you first need to apply the inverse of your "imaginary" camera's matrix (and yes, it simply transforms everything rendered afterwards -aka "the world"- in the opposite way).


"How to render and move things" suggests a wrong order. You can't move stuff after rendering it (it's just a bunch of pixels in the frame buffer now). First you setup your matrix to have it drawn in the right place, then you render. If you move it, you use a different matrix when drawing the next frame.

Share this post


Link to post
Share on other sites
Thanks for reply all. Yeah I will go through tutorials as it is defintely faster way to get things moving. Reading booking and practising will definitely take months.

[quote name='Trienco' timestamp='1302938888' post='4799054']
[quote name='playstation' timestamp='1302883778' post='4798822']
I want learn how to handle your own matrices ???, how does modeview matrix actually work. How to render and move things in 3D. I do not think I completely understand it TBH.
[/quote]

Two simplifications:
A matrix describes a coordinate system, the columns are x,y,z and origin. That's all there is to it (unless you add scaling or shearing). Don't worry about mathematical details of what happens when you multiply, just think "M = A*B" means "apply transformations in A after applying transformations in B". The result can still be directly read as coordinate system.

The mysterious w-coordinate on vectors can be thought of like this: w = 0 -> direction vector, w = 1 -> position vector (yes, it applies to matrices, the axes have w=0, the position/translation has w=1). If you do the math yourself you will see how it removes the translation part when multiplying with a matrix and when you look at GLs lighting model you will see how it makes the difference between a point light and a directional light.


More bla:
OpenGL is actually hiding stuff in a way that is both convenient and confusing. glRotate isn't magic, it just creates a rotationMatrix and does modelview = rotation * modelview. Same with glTranslate. D3D forces you to do it yourself, so you can't ignore what really happens. Seems more tedious, but ignorance isn't always bliss (look at the kind of questions arising from trying to achieve everything with these to glCursed functions). You want to forget about them if you handle your matrices yourself. If you don't move the point of view (or "camera", though technically such a thing doesn't exist) you can just directly glLoadMatrix your objects matrix and render it. Else you first need to apply the inverse of your "imaginary" camera's matrix (and yes, it simply transforms everything rendered afterwards -aka "the world"- in the opposite way).


"How to render and move things" suggests a wrong order. You can't move stuff after rendering it (it's just a bunch of pixels in the frame buffer now). First you setup your matrix to have it drawn in the right place, then you render. If you move it, you use a different matrix when drawing the next frame.
[/quote]

Thanks, I was looking at some matrixes and it is definetly confusing. OpenGL handles so I guess we do not have to worry about it. I like your example M= A*B and how OpenGL handle matrix in reverse order. I am not sure about the model and view matrix. Model handle from objecr space to world space and view from world spcae to eye space. It is confusing

Share this post


Link to post
Share on other sites
[quote name='playstation' timestamp='1303130608' post='4799854']
Thanks, I was looking at some matrixes and it is definetly confusing. OpenGL handles so I guess we do not have to worry about it. I like your example M= A*B and how OpenGL handle matrix in reverse order. I am not sure about the model and view matrix. Model handle from objecr space to world space and view from world spcae to eye space. It is confusing
[/quote]

If you're a university student try to take linear algebra, it helps alot.

Share this post


Link to post
Share on other sites
[quote name='playstation' timestamp='1302883778' post='4798822']
Nehe tutorial ? or what resources on internet I should follow. I have ordered OpenGL superbible 5th edition from amazon so it should be in my hands in 4 days but I would like to know how you guys learned OpenGL programming ?
[/quote]

Maybe you know this already, but be aware that NeHe uses the old fixed pipeline of OpenGL 2, but the Superbible 5th edition uses OpenGL 3.3. Assuming that you're just starting out, this can be very confusing because the book will not use most of the functions found in NeHe's tutorials as they are deprecated. Everything is done with shaders in the Superbible and that is why the author provides the GLtools library. Basically the GLtools is providing the functionality from OpenGL 2 that was deprecated in 3.3. I'm a beginner at OpenGL so It took me a bit to figure this out.

Share this post


Link to post
Share on other sites
[quote name='playstation' timestamp='1303130608' post='4799854']
I like your example M= A*B and how OpenGL handle matrix in reverse order.[/quote]
OpenGL doesn't handle matrices in reverse order. (If you're referring to the transforms being applied in the order B->A rather than A->B, this is simply a consequence of the fact that most OpenGL references use column-vector notation. But, it's not 'reversed' with respect to anything in particular.)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Forum Statistics

    • Total Topics
      628275
    • Total Posts
      2981762
  • Similar Content

    • By mellinoe
      Hi all,
      First time poster here, although I've been reading posts here for quite a while. This place has been invaluable for learning graphics programming -- thanks for a great resource!
      Right now, I'm working on a graphics abstraction layer for .NET which supports D3D11, Vulkan, and OpenGL at the moment. I have implemented most of my planned features already, and things are working well. Some remaining features that I am planning are Compute Shaders, and some flavor of read-write shader resources. At the moment, my shaders can just get simple read-only access to a uniform (or constant) buffer, a texture, or a sampler. Unfortunately, I'm having a tough time grasping the distinctions between all of the different kinds of read-write resources that are available. In D3D alone, there seem to be 5 or 6 different kinds of resources with similar but different characteristics. On top of that, I get the impression that some of them are more or less "obsoleted" by the newer kinds, and don't have much of a place in modern code. There seem to be a few pivots:
      The data source/destination (buffer or texture) Read-write or read-only Structured or unstructured (?) Ordered vs unordered (?) These are just my observations based on a lot of MSDN and OpenGL doc reading. For my library, I'm not interested in exposing every possibility to the user -- just trying to find a good "middle-ground" that can be represented cleanly across API's which is good enough for common scenarios.
      Can anyone give a sort of "overview" of the different options, and perhaps compare/contrast the concepts between Direct3D, OpenGL, and Vulkan? I'd also be very interested in hearing how other folks have abstracted these concepts in their libraries.
    • By aejt
      I recently started getting into graphics programming (2nd try, first try was many years ago) and I'm working on a 3d rendering engine which I hope to be able to make a 3D game with sooner or later. I have plenty of C++ experience, but not a lot when it comes to graphics, and while it's definitely going much better this time, I'm having trouble figuring out how assets are usually handled by engines.
      I'm not having trouble with handling the GPU resources, but more so with how the resources should be defined and used in the system (materials, models, etc).
      This is my plan now, I've implemented most of it except for the XML parts and factories and those are the ones I'm not sure of at all:
      I have these classes:
      For GPU resources:
      Geometry: holds and manages everything needed to render a geometry: VAO, VBO, EBO. Texture: holds and manages a texture which is loaded into the GPU. Shader: holds and manages a shader which is loaded into the GPU. For assets relying on GPU resources:
      Material: holds a shader resource, multiple texture resources, as well as uniform settings. Mesh: holds a geometry and a material. Model: holds multiple meshes, possibly in a tree structure to more easily support skinning later on? For handling GPU resources:
      ResourceCache<T>: T can be any resource loaded into the GPU. It owns these resources and only hands out handles to them on request (currently string identifiers are used when requesting handles, but all resources are stored in a vector and each handle only contains resource's index in that vector) Resource<T>: The handles given out from ResourceCache. The handles are reference counted and to get the underlying resource you simply deference like with pointers (*handle).  
      And my plan is to define everything into these XML documents to abstract away files:
      Resources.xml for ref-counted GPU resources (geometry, shaders, textures) Resources are assigned names/ids and resource files, and possibly some attributes (what vertex attributes does this geometry have? what vertex attributes does this shader expect? what uniforms does this shader use? and so on) Are reference counted using ResourceCache<T> Assets.xml for assets using the GPU resources (materials, meshes, models) Assets are not reference counted, but they hold handles to ref-counted resources. References the resources defined in Resources.xml by names/ids. The XMLs are loaded into some structure in memory which is then used for loading the resources/assets using factory classes:
      Factory classes for resources:
      For example, a texture factory could contain the texture definitions from the XML containing data about textures in the game, as well as a cache containing all loaded textures. This means it has mappings from each name/id to a file and when asked to load a texture with a name/id, it can look up its path and use a "BinaryLoader" to either load the file and create the resource directly, or asynchronously load the file's data into a queue which then can be read from later to create the resources synchronously in the GL context. These factories only return handles.
      Factory classes for assets:
      Much like for resources, these classes contain the definitions for the assets they can load. For example, with the definition the MaterialFactory will know which shader, textures and possibly uniform a certain material has, and with the help of TextureFactory and ShaderFactory, it can retrieve handles to the resources it needs (Shader + Textures), setup itself from XML data (uniform values), and return a created instance of requested material. These factories return actual instances, not handles (but the instances contain handles).
       
       
      Is this a good or commonly used approach? Is this going to bite me in the ass later on? Are there other more preferable approaches? Is this outside of the scope of a 3d renderer and should be on the engine side? I'd love to receive and kind of advice or suggestions!
      Thanks!
    • By nedondev
      I 'm learning how to create game by using opengl with c/c++ coding, so here is my fist game. In video description also have game contain in Dropbox. May be I will make it better in future.
      Thanks.
    • By Abecederia
      So I've recently started learning some GLSL and now I'm toying with a POM shader. I'm trying to optimize it and notice that it starts having issues at high texture sizes, especially with self-shadowing.
      Now I know POM is expensive either way, but would pulling the heightmap out of the normalmap alpha channel and in it's own 8bit texture make doing all those dozens of texture fetches more cheap? Or is everything in the cache aligned to 32bit anyway? I haven't implemented texture compression yet, I think that would help? But regardless, should there be a performance boost from decoupling the heightmap? I could also keep it in a lower resolution than the normalmap if that would improve performance.
      Any help is much appreciated, please keep in mind I'm somewhat of a newbie. Thanks!
    • By test opty
      Hi,
      I'm trying to learn OpenGL through a website and have proceeded until this page of it. The output is a simple triangle. The problem is the complexity.
      I have read that page several times and tried to analyse the code but I haven't understood the code properly and completely yet. This is the code:
       
      #include <glad/glad.h> #include <GLFW/glfw3.h> #include <C:\Users\Abbasi\Desktop\std_lib_facilities_4.h> using namespace std; //****************************************************************************** void framebuffer_size_callback(GLFWwindow* window, int width, int height); void processInput(GLFWwindow *window); // settings const unsigned int SCR_WIDTH = 800; const unsigned int SCR_HEIGHT = 600; const char *vertexShaderSource = "#version 330 core\n" "layout (location = 0) in vec3 aPos;\n" "void main()\n" "{\n" " gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n" "}\0"; const char *fragmentShaderSource = "#version 330 core\n" "out vec4 FragColor;\n" "void main()\n" "{\n" " FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n" "}\n\0"; //******************************* int main() { // glfw: initialize and configure // ------------------------------ glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // glfw window creation GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "My First Triangle", nullptr, nullptr); if (window == nullptr) { cout << "Failed to create GLFW window" << endl; glfwTerminate(); return -1; } glfwMakeContextCurrent(window); glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); // glad: load all OpenGL function pointers if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { cout << "Failed to initialize GLAD" << endl; return -1; } // build and compile our shader program // vertex shader int vertexShader = glCreateShader(GL_VERTEX_SHADER); glShaderSource(vertexShader, 1, &vertexShaderSource, nullptr); glCompileShader(vertexShader); // check for shader compile errors int success; char infoLog[512]; glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(vertexShader, 512, nullptr, infoLog); cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << endl; } // fragment shader int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(fragmentShader, 1, &fragmentShaderSource, nullptr); glCompileShader(fragmentShader); // check for shader compile errors glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success); if (!success) { glGetShaderInfoLog(fragmentShader, 512, nullptr, infoLog); cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << endl; } // link shaders int shaderProgram = glCreateProgram(); glAttachShader(shaderProgram, vertexShader); glAttachShader(shaderProgram, fragmentShader); glLinkProgram(shaderProgram); // check for linking errors glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success); if (!success) { glGetProgramInfoLog(shaderProgram, 512, nullptr, infoLog); cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << endl; } glDeleteShader(vertexShader); glDeleteShader(fragmentShader); // set up vertex data (and buffer(s)) and configure vertex attributes float vertices[] = { -0.5f, -0.5f, 0.0f, // left 0.5f, -0.5f, 0.0f, // right 0.0f, 0.5f, 0.0f // top }; unsigned int VBO, VAO; glGenVertexArrays(1, &VAO); glGenBuffers(1, &VBO); // bind the Vertex Array Object first, then bind and set vertex buffer(s), //and then configure vertex attributes(s). glBindVertexArray(VAO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0); glEnableVertexAttribArray(0); // note that this is allowed, the call to glVertexAttribPointer registered VBO // as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind glBindBuffer(GL_ARRAY_BUFFER, 0); // You can unbind the VAO afterwards so other VAO calls won't accidentally // modify this VAO, but this rarely happens. Modifying other // VAOs requires a call to glBindVertexArray anyways so we generally don't unbind // VAOs (nor VBOs) when it's not directly necessary. glBindVertexArray(0); // uncomment this call to draw in wireframe polygons. //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // render loop while (!glfwWindowShouldClose(window)) { // input // ----- processInput(window); // render // ------ glClearColor(0.2f, 0.3f, 0.3f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); // draw our first triangle glUseProgram(shaderProgram); glBindVertexArray(VAO); // seeing as we only have a single VAO there's no need to // bind it every time, but we'll do so to keep things a bit more organized glDrawArrays(GL_TRIANGLES, 0, 3); // glBindVertexArray(0); // no need to unbind it every time // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) glfwSwapBuffers(window); glfwPollEvents(); } // optional: de-allocate all resources once they've outlived their purpose: glDeleteVertexArrays(1, &VAO); glDeleteBuffers(1, &VBO); // glfw: terminate, clearing all previously allocated GLFW resources. glfwTerminate(); return 0; } //************************************************** // process all input: query GLFW whether relevant keys are pressed/released // this frame and react accordingly void processInput(GLFWwindow *window) { if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) glfwSetWindowShouldClose(window, true); } //******************************************************************** // glfw: whenever the window size changed (by OS or user resize) this callback function executes void framebuffer_size_callback(GLFWwindow* window, int width, int height) { // make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays. glViewport(0, 0, width, height); } As you see, about 200 lines of complicated code only for a simple triangle. 
      I don't know what parts are necessary for that output. And also, what the correct order of instructions for such an output or programs is, generally. That start point is too complex for a beginner of OpenGL like me and I don't know how to make the issue solved. What are your ideas please? What is the way to figure both the code and the whole program out correctly please?
      I wish I'd read a reference that would teach me OpenGL through a step-by-step method. 
  • Popular Now