• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
MylesEvans

Does Anyone know of any 2D lighting techniques?

3 posts in this topic

I want to implement 2d lighting in my game. I know there are multiple cases of people doing so, yet I cannot seem to find any tutorials/articles on how to do so.
0

Share this post


Link to post
Share on other sites
Depending on how realistic you want it, I'd say 2D lighting isn't much different than 3D. For very simple pointlights you can simply render a quad with a white circle drawn on it. Enable additive blending and apply a color to modulate the color. Then verything behind the white circle will bright up. Cheap, and simple. However, this does not produce shadows or per-pixel effects such as normalMapping or specular hightlights. For more advanced effects, a (point)light could be defined as



- origin (where the light comes from)
- direction vector (for spotlights)
- radius (for circular light spots), (or an angle for spotlights)
- diffuse color (RGB)
- specular color (RGB)
- Maybe an ambient color that adds to a wider circle / area for indirect light simulation

In order to make per pixel-lighting work (eventually with normalMaps), you need to think of a 3D scene. Even though the scene might be flat, the layers and lights still have an X, Y(height) and Z(depth) position. Now for each pixel affected by a light, compute the diffuse, eventually specular, and eventually ambient colors. In case there are 3 lights on your screen, you can render the contents 3 times. Each time with different light parameters applied for the shader (position, radius, colors, ...). Now the shader looks the same as you would use in a 3D scene:
[code]
float attenuation = 1 - saturate(distanceBetweenPixelAndLight / lightMaxRange); // Simple linear fall-off
float3 diffuse = saturate( dot( pixelNormal, lightVectorToPixel ) ) * lightDiffuseColor.rgb * attenuation;

float4 albedo = tex2D( albedoTex, uv ); // Get the texture of the sprite, platform, or whatever you are rendering
resultColor.rgb = albedo * diffuse;
// .. And maybe add some more effects such as ambient or specular
resultColor.a = albedo.a; // In case the texture contains an alpha mask for transparency
[/code]
To get some better performance (with many lights), you can also think about using a deferred rendering engine, or try to find out which parts of the screen are affected by which lights, rather than simply drawing the whole thing again for each light.


[b]Shadows[/b]
This does not give shadows yet. If you want to project foreground objects to the background, you can make use of depthMaps / Variance ShadowMapping like 3D games do. Although there are probably faster methods that can make good use of the fact the game is 2D... depends on where the lights are placed, and how complex the scenery is, I guess. What depthMaps do is rendering the scene from the lights point of view. Then when rendering, the depth values from the map and the current distance between pixel and light can tell whether a pixel was occluded by something else or not.


Some other thing. To make flat sprites (characters for example) look "3D", you need to make very good normalMaps for them. This can be hard though, normalMaps only help giving the illusion of depth a bit. Find a good balance between using dynamic lighting and pre-baked lighting (drawn into the texture of the character / object).

Good luck,
Rick
0

Share this post


Link to post
Share on other sites
Notice please that it is possible to re-consruct a volume for a sprite. The "camera" is usually fixed (even if for some effect a slight camera rotation is possible to e.g. simulate speed). Assume, for example, a dimetric top view. Then it is possible to define a height map, i.e. an image where for each pixel of the sprite a height value is stored. Later on, during rendering, the fragment position together with an origin can be used to compute a ray. This ray, together with the height information, can further be used to re-construct a 3D position. The effect that is possible with such a method is e.g. visualized in [url="http://www.youtube.com/watch?v=-Q6ISVaM5Ww"]this video[/url] starting at approx. 2:50 min (but don't look the avatars in that video; they are as flat as ... well, sprites ;))

The problem is how to get such a height map. However, you have the same problem with a normal map, too. The best way is to use a 3D modeling package and to compute the color, normal, and height (or perhaps depth, dependent on the camera orientation) maps in 3D.
0

Share this post


Link to post
Share on other sites
i dont see why you couldnt implement global illumination or ambient occlusion in 2d too. :)
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0