Sign in to follow this  

DX11 [D3D11 ShaderResourceView] Texture Question

Recommended Posts

I posted this in the beginners section alomst 24 hours ago and i havent gotten a singel view on the post :/
I'm re asking the question here instead.

I started programming with DX11 last week (bought a book). And i've come to 2D Rendering with D3D, more specific, i've finished that chapter. Now i'm doing the exercises on that chapter, one of them is about loading in an extra image and use it as a second sprite.

I can't get my head around the "D3D11ShaderResourceView" completly. I understand that it's used to bind the loaded texture so that it's data can be accessed. But i can't seem to find anything describing if it's just one texture per resource, where i have to create an array of "D3D11ShaderResourceView", or if i can use the same resource for multiple textures.

Share this post

Link to post
Share on other sites
Make sure you keep the distinction between resources (which can be textures or buffers) and resource views (used to bind resources to the pipeline) clear. A shader resource view is just one of the resource view types, and it is used to bind resources to the various programmable shader stages.

When you author your shader programs, you will need a particular type of resource to be declared in HLSL. The type of resource that you declare there will dictate which variety of view you need to bind the resource with, as well as which variety of resource you will need. For example, if you declare the following two resources in your program:

[code]Texture2D<float> tex01;
Texture2DArray<float4> tex02;[/code]

then you need to bind a single texture to the first one with a shader resource view that only has one surface (i.e. no array), while the second one requires a texture array resource and a properly configured resource view.

The part that might be tricky when you are getting started is that you can use a texture array, and bind a single element from it to the first variety shown above. That is the beauty of using resource views - the actual resource can come in many shapes and sizes, but you just need to use a view to grab a portion of the resource, which ensures that it provides the memory in the proper layout and format.

Which book did you pick up, by the way? I'm just curious to see what the competition has put together :)

Share this post

Link to post
Share on other sites
Hmm for some reason my reply didn't ger trough :/

Anyway i think i get it. If i want to create an array of textures i need to configure the Shader View Description differently.

I bought the "Beginning DirectX 11 Game Programming" writte by Allen Sherrod & Wendy Jones.


Share this post

Link to post
Share on other sites
Hooray for reviving dead threads!

I was looking for an answer to an issue I'm having, and came across this thread. What I'm attempting to do is acquire a list of Texture2D ShaderResourceViews, one for each element of a texture that was created as an array. While I am able to create a series of Texture2DArray ShaderResourceViews, each one pointing to a particular element in the texture array, I cannot find a method that allows me to create a Texture2D ShaderResourceView for each element. This is a pain, because when I set these SRV's to a shader, the HLSL code itself must be defined as having a Texture2DArray input type. The problem for me is that I have a number of post-processing utility pixel shaders, and I hate to have to have multiple versions of each of them (or otherwise compensate for) by having each version take either a Texture2D or a Texture2DArray as its input.

Jason, in your post above, you seem to indicate that what I'm attempting to do is possible, I'm just not seeing how. All I need to do is create a Texture2D SRV from each element of a texture that was created as an array texture. Any help would be greatly appreciated. Thanks!

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Forum Statistics

    • Total Topics
    • Total Posts
  • Similar Content

    • By schneckerstein
      I manged so far to implement NVIDIA's NDF-Filtering at a basic level (the paper can be found here). Here is my code so far:
      //... // project the half vector on the normal (?) float3 hppWS = halfVector / dot(halfVector, geometricNormal) float2 hpp = float2(dot(hppWS, wTangent), dot(hppWS, wBitangent)); // compute the pixel footprint float2x2 dhduv = float2x2(ddx(hpp), ddy(hpp)); // compute the rectangular area of the pixel footprint float2 rectFp = min((abs(dhduv[0]) + abs(dhduv[1])) * 0.5, 0.3); // map the area to ggx roughness float2 covMx = rectFp * rectFp * 2; roughness = sqrt(roughness * roughness + covMx); //... Now I want combine this with LEAN mapping as state in Chapter 5.5 of the NDF paper.
      But I struggle to understand what theses sections actually means in Code: 
      I suppose the first-order moments are the B coefficent of the LEAN map, however things like
      float3 hppWS = halfVector / dot(halfVector, float3(lean_B, 0)); doesn't bring up anything usefull.
      Next theres:
      This simply means:
      // M and B are the coefficents from the LEAN map float2x2 sigma_mat = float2x2( M.x - B.x * B.x, M.z - B.x * B.y, M.z - B.x * B.y, M.y - B.y * B.y); does it?
      This is the part confuses me the most: how am I suppose to convolute two matrices? I know the concept of convolution in terms of functions, not matrices. Should I multiple them? That didn't make any usefully output.
      I hope someone can help with this maybe too specific question, I'm really despaired to make this work and i've spend too many hours of trial & error...
    • By Baemz
      I've been working on some culling-techniques for a project. We've built our own engine so pretty much everything is built from scratch. I've set up a frustum with the following code, assuming that the FOV is 90 degrees.
      float angle = CU::ToRadians(45.f); Plane<float> nearPlane(Vector3<float>(0, 0, aNear), Vector3<float>(0, 0, -1)); Plane<float> farPlane(Vector3<float>(0, 0, aFar), Vector3<float>(0, 0, 1)); Plane<float> right(Vector3<float>(0, 0, 0), Vector3<float>(angle, 0, -angle)); Plane<float> left(Vector3<float>(0, 0, 0), Vector3<float>(-angle, 0, -angle)); Plane<float> up(Vector3<float>(0, 0, 0), Vector3<float>(0, angle, -angle)); Plane<float> down(Vector3<float>(0, 0, 0), Vector3<float>(0, -angle, -angle)); myVolume.AddPlane(nearPlane); myVolume.AddPlane(farPlane); myVolume.AddPlane(right); myVolume.AddPlane(left); myVolume.AddPlane(up); myVolume.AddPlane(down); When checking the intersections I am using a BoundingSphere of my models, which is calculated by taking the average position of all vertices and then choosing the furthest distance to a vertex for radius. The actual intersection test looks like this, where the "myFrustum90" is the actual frustum described above.
      The orientationInverse is the viewMatrix in this case.
      bool CFrustum::Intersects(const SFrustumCollider& aCollider) { CU::Vector4<float> position = CU::Vector4<float>(aCollider.myCenter.x, aCollider.myCenter.y, aCollider.myCenter.z, 1.f) * myOrientationInverse; return myFrustum90.Inside({ position.x, position.y, position.z }, aCollider.myRadius); } The Inside() function looks like this.
      template <typename T> bool PlaneVolume<T>::Inside(Vector3<T> aPosition, T aRadius) const { for (unsigned short i = 0; i < myPlaneList.size(); ++i) { if (myPlaneList[i].ClassifySpherePlane(aPosition, aRadius) > 0) { return false; } } return true; } And this is the ClassifySpherePlane() function. (The plane is defined as a Vector4 called myABCD, where ABC is the normal)
      template <typename T> inline int Plane<T>::ClassifySpherePlane(Vector3<T> aSpherePosition, float aSphereRadius) const { float distance = (aSpherePosition.Dot(myNormal)) - myABCD.w; // completely on the front side if (distance >= aSphereRadius) { return 1; } // completely on the backside (aka "inside") if (distance <= -aSphereRadius) { return -1; } //sphere intersects the plane return 0; }  
      Please bare in mind that this code is not optimized nor well-written by any means. I am just looking to get it working.
      The result of this culling is that the models seem to be culled a bit "too early", so that the culling is visible and the models pops away.
      How do I get the culling to work properly?
      I have tried different techniques but haven't gotten any of them to work.
      If you need more code or explanations feel free to ask for it.

    • By evelyn4you
      i have read very much about the binding of a constantbuffer to a shader but something is still unclear to me.
      e.g. when performing :   vertexshader.setConstantbuffer ( buffer,  slot )
       is the buffer bound
      a.  to the VertexShaderStage
      b. to the VertexShader that is currently set as the active VertexShader
      Is it possible to bind a constantBuffer to a VertexShader e.g. VS_A and keep this binding even after the active VertexShader has changed ?
      I mean i want to bind constantbuffer_A  to VS_A, an Constantbuffer_B to VS_B  and  only use updateSubresource without using setConstantBuffer command every time.

      Look at this example:
      SetVertexShader ( VS_A )
      vertexshader.setConstantbuffer ( buffer_A,  slot_A )
      perform drawcall       ( buffer_A is used )

      SetVertexShader ( VS_B )
      vertexshader.setConstantbuffer ( buffer_B,  slot_A )
      perform drawcall   ( buffer_B is used )
      SetVertexShader ( VS_A )
      perform drawcall   (now which buffer is used ??? )
      I ask this question because i have made a custom render engine an want to optimize to
      the minimum  updateSubresource, and setConstantbuffer  calls
    • By noodleBowl
      I got a quick question about buffers when it comes to DirectX 11. If I bind a buffer using a command like:
      IASetVertexBuffers IASetIndexBuffer VSSetConstantBuffers PSSetConstantBuffers  and then later on I update that bound buffer's data using commands like Map/Unmap or any of the other update commands.
      Do I need to rebind the buffer again in order for my update to take effect? If I dont rebind is that really bad as in I get a performance hit? My thought process behind this is that if the buffer is already bound why do I need to rebind it? I'm using that same buffer it is just different data
    • By Rockmover
      I am really stuck with something that should be very simple in DirectX 11. 
      1. I can draw lines using a PC (position, colored) vertices and a simple shader just fine.
      2. I can draw 3D triangles using PCN (position, colored, normal) vertices just fine (even transparency and SpecularBlinnPhong shaders).
      However, if I'm using my 3D shader, and I want to draw my PC lines in the same scene how can I do that?
      If I change my lines to PCN and pass them to the 3D shader with my triangles, then the lighting screws them all up.  I only want the lighting for the 3D triangles, but no SpecularBlinnPhong/Lighting for the lines (just PC). 
      I am sure this is because if I change the lines to PNC there is not really a correct "normal" for the lines.  
      I assume I somehow need to draw the 3D triangles using one shader, and then "switch" to another shader and draw the lines?  But I have no clue how to use two different shaders in the same scene.  And then are the lines just drawn on top of the triangles, or vice versa (maybe draw order dependent)?  
      I must be missing something really basic, so if anyone can just point me in the right direction (or link to an example showing the implementation of multiple shaders) that would be REALLY appreciated.
      I'm also more than happy to post my simple test code if that helps as well!
  • Popular Now