Jump to content
  • Advertisement
Sign in to follow this  
SingularOne

OpenGL Rotation Matrix about point

This topic is 2497 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hey, would you help me a bit? I'm struggling with making matrices to rotate about point. My rotation part of the matrix construction looks like that:



boneMatrices[offs + 0] = cos(rx) * cos(ry);


boneMatrices[offs + 1] = -cos(rz) * sin(rx) - cos(rx)*sin(ry)*sin(rz);
boneMatrices[offs + 2] = cos(rx) * cos(rz) * sin(ry) + sin(rx) * sin(rz);

boneMatrices[offs + 4] = cos(ry) * sin(rx);
boneMatrices[offs + 5] = cos(rx) * cos(rz) - sin(rx)*sin(ry)*sin(rz);
boneMatrices[offs + 6] = cos(rz) * sin(rx) * sin(ry) - cos(rx) * sin(rz);

boneMatrices[offs + 8] = -sin(ry);
boneMatrices[offs + 9] = cos(ry) * sin(rz);
boneMatrices[offs + 10] = cos(ry) * cos(rz);


I pass origin for rotation instead of scaling part of the matrix, and then, in vertex shader i do:

1) subtract origin from vertex

2) rotate vertex

3) add origin to vertex

It works, but it sucks. too much operations, ugly code;

I want to pass to my shader matrices that already do rotation about specific point. but really i need someone's help here. how can i make above matrix to rotate about specific point? i couldn't find any descriprion adoptable in my case.




i use opengl, if it matters.

Share this post


Link to post
Share on other sites
Advertisement
Assuming that you use column vectors, if T(c) is the translation matrix to the center of rotation and R is the rotation matrix, then the product
M := T(c) * R * T(-c)
defines the desired new rotation matrix. It translates by -c, rotates, and translates back by c like you do now separately.

EDIT:
You can take advantage from knowing the structures of the matrices when you compute the above product. Think of M having a 3x3 sub-marix M[sub]R[/sub] on the upper left and a 1x3 sub-matrix M[sub]T[/sub] on the upper right, and doing so with R and T as well, then
M[sub]R[/sub] := R[sub]R[/sub]
M[sub]T[/sub] := R[sub]R[/sub] * T[sub]T[/sub](-c) + T[sub]T[/sub](c)
means the minimum computations to be done for yielding in M.

Share this post


Link to post
Share on other sites

1) subtract origin from vertex

2) rotate vertex

3) add origin to vertex



I know you might not want to hear this, but the way you listed above is the correct way. If you want your code to still look good, you can write it like this (writen in psuedocode of course):


function RotateAboutPoint(Point,Rotation){
return MoveToAxis * Rotate * MoveFromAxis;
}


It might even perform better than your "beautiful" code since matrix multiplication is accelerated while multiplying every element in your matrix separately is not... (Not sure about this one though...)

Share this post


Link to post
Share on other sites
Thanks for your replies.

Well i've tried to do it like haegarr described:






//Origins

oMat.make_identity();
oMat2.make_identity();

oMat.element(0, 3) = -ox;
oMat.element(1, 3) = -oy;
oMat.element(2, 3) = -oz;

oMat2.element(0, 3) = ox;
oMat2.element(1, 3) = oy;
oMat2.element(2, 3) = oz;


//Rotation(tested)
bMat.make_identity();

bMat.element(0, 0) = cos(rx) * cos(ry);
bMat.element(1, 0) = -cos(rz) * sin(rx) - cos(rx)*sin(ry)*sin(rz);
bMat.element(2, 0) = cos(rx) * cos(rz) * sin(ry) + sin(rx) * sin(rz);;
bMat.element(0, 1) = cos(ry) * sin(rx);
bMat.element(1, 1) = cos(rx) * cos(rz) - sin(rx)*sin(ry)*sin(rz);
bMat.element(2, 1) = cos(rz) * sin(rx) * sin(ry) - cos(rx) * sin(rz);
bMat.element(0, 2) = -sin(ry);
bMat.element(1, 2) = cos(ry) * sin(rz);
bMat.element(2, 2) = cos(ry) * cos(rz);

//Bone translation

bMat.element(0, 3) = translation.x;
bMat.element(1, 3) = translation.y;
bMat.element(2, 3) = translation.z;


//M := R * T(-c) + T© ??
bMat *= oMat;
bMat += oMat2;



and rotation\translation is now rigth, but for some reason i[color="#8b0000"]t's about 2x weaker than it should be and it looks like it scales vertices a bit then rotating

Share this post


Link to post
Share on other sites



bMat *= oMat;
bMat += oMat2;




Why are you adding? All matrix chaining transformations should be multiplications...

Share this post


Link to post
Share on other sites
Ok, fixed by



bMat *= oMat;
oMat2 *= bMat;
bMat = oMat2;//(or just pass oMat2 to shader)


(equialent of -T * R * T)

but i'm not sure if it's ok to use such a matrix for tangent and normal? looks ok, but just want to know.

Share this post


Link to post
Share on other sites

[quote name='SingularOne' timestamp='1313485221' post='4849759']

bMat *= oMat;
bMat += oMat2;



Why are you adding? All matrix chaining transformations should be multiplications...
[/quote]
[font="arial, verdana, tahoma, sans-serif"]Please let me clarify what
[color="#1C2837"]M[sub]T[/sub] := R[sub]R[/sub] * T[sub]T[/sub](-c) + T[sub]T[/sub](c)[/font]
actually means. As mentioned my post above, [color="#1C2837"]R[sub]R[/sub] is a 3x3 matrix and [color="#1C2837"]T[sub]T[/sub] is a 1x3 matrix (a.k.a. column vector). Multiplying a 3x3 matrix on the left and a 1x3 matrix on the right gives you a 1x3 matrix. Adding a 1x3 matrix onto a 1x3 matrix gives you a 1x3 matrix.

So notice that the result [color="#1C2837"]M[sub]T[/sub] is a 1x3 matrix (and that [color="#1C2837"]M[sub]R[/sub] is a 3x3 matrix), while M itself is a usual homogeneous 4x4 matrix. The correct assembly then looks like

bMat.make_identity();
// MR
bMat.element(0, 0) = cos(rx) * cos(ry);
bMat.element(1, 0) = -cos(rz) * sin(rx) - cos(rx)*sin(ry)*sin(rz);
bMat.element(2, 0) = cos(rx) * cos(rz) * sin(ry) + sin(rx) * sin(rz);;
bMat.element(0, 1) = cos(ry) * sin(rx);
bMat.element(1, 1) = cos(rx) * cos(rz) - sin(rx)*sin(ry)*sin(rz);
bMat.element(2, 1) = cos(rz) * sin(rx) * sin(ry) - cos(rx) * sin(rz);
bMat.element(0, 2) = -sin(ry);
bMat.element(1, 2) = cos(ry) * sin(rz);
bMat.element(2, 2) = cos(ry) * cos(rz);
// MT = MR * TT(-c) + TT(c)
bMat.element(0, 3) = bMat.element(0, 0) * (-ox) + bMat.element(0, 1) * (-oy) + bMat.element(0, 2) * (-oz) + ox;
bMat.element(1, 3) = bMat.element(1, 0) * (-ox) + bMat.element(1, 1) * (-oy) + bMat.element(1, 2) * (-oz) + oy;
bMat.element(2, 3) = bMat.element(2, 0) * (-ox) + bMat.element(2, 1) * (-oy) + bMat.element(2, 2) * (-oz) + oz;

if I have interpreted the indexing scheme correctly.


EDIT: It is for sure possible to compose the desired rotation simply by computing [color="#1C2837"]T(c) * R * T(-c). The above way just shows (as mentioned) the minimal computational effort to do; it avoids all that nasty scalar products with 0 and 1. However, this kind of optimization will probably not be noticeable.

Share this post


Link to post
Share on other sites
[color="#1C2837"] haegarr,
i don't know how to thank you for your effort, your method works fine and it's much more efficient
[color="#1c2837"]
SillyCow,
thank you too for pointing out the part i misunderstood.

[color="#1c2837"]and yeah, i've alredy noticed, that it's not really good to rotate normals.

Share this post


Link to post
Share on other sites

...
(equialent of -T * R * T)

but i'm not sure if it's ok to use such a matrix for tangent and normal? looks ok, but just want to know.

Well, please notice that -T is not the same as T(-c), because the elements on the main diagonal will be negated in -T but not in T(-c)!

However, you can apply T(-c) * R * T(c) to a normal / tangent because
a) normals and tangents are direction vectors and are hence invariant to translations, and
b) there is no scaling or shearing in this formula.
Hence for normals and tangents the above formula does the same as the lonely R does: It simply rotates the vector.

Share this post


Link to post
Share on other sites
yes it looks like problem is in my shader.

here shader that i found in nvidia example of hardware skinning:



attribute vec4 position;
attribute vec3 normal;
attribute vec4 weight;
attribute vec4 index;
attribute float numBones;

uniform mat4 boneMatrices[30];
uniform vec4 color;
uniform vec4 lightPos;

void main()
{
vec4 transformedPosition = vec4(0.0);
vec3 transformedNormal = vec3(0.0);

vec4 curIndex = index;
vec4 curWeight = weight;

for (int i = 0; i < int(numBones); i++)
{
mat4 m44 = boneMatrices[int(curIndex.x)];

// transform the offset by bone i
transformedPosition += m44 * position * curWeight.x;

mat3 m33 = mat3(m44[0].xyz,
m44[1].xyz,
m44[2].xyz);

// transform normal by bone i
transformedNormal += m33 * normal * curWeight.x;

// shift over the index/weight variables, this moves the index and
// weight for the current bone into the .x component of the index
// and weight variables
curIndex = curIndex.yzwx;
curWeight = curWeight.yzwx;
}

gl_Position = gl_ModelViewProjectionMatrix * transformedPosition;

transformedNormal = normalize(transformedNormal);
gl_FrontColor = dot(transformedNormal, lightPos.xyz) * color;
}



and significant part of my adoption(maximum 2 bones affecting vertex, 1st one is always most effective, so 2nd affecting bone might exist only if 1st one is):

V = gl_Vertex;
vec3 n2 = gl_Normal;
vec3 t2 = Tangent;
if(Bones.x >= 0.0)//Bone1 ID
{
mat4 tmat = BonesMat[int(Bones.x)]; //Bone matrix
mat3 nmat = mat3(tmat[0].xyz, tmat[1].xyz, tmat[2].xyz);

V = tmat * gl_Vertex * Bones.z; //Bones.z - Bone 1 weight
n2 = nmat * gl_Normal * Bones.z;
t2 = nmat * Tangent * Bones.z;

if(Bones.y >= 0.0)//Bone2 ID
{
tmat = BonesMat[int(Bones.y)];
nmat = mat3(tmat[0].xyz, tmat[1].xyz, tmat[2].xyz);

V += tmat * gl_Vertex * Bones.w; //Bones.w - Bone2 weight
n2 += nmat * gl_Normal * Bones.w;
t2 += nmat * Tangent * Bones.w;
}
}

Further - using V,N,T as regular;

result: rotation\translation is alright.
problem: lighting glitches. then i move camera away from object - vertices that affected by 2 bones become dark with the distance(lambert decreasing).

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Similar Content

    • By nOoNEE
      hello guys , i have some questions  what does glLinkProgram  and  glBindAttribLocation do?  i searched but there wasnt any good resource 
    • By owenjr
      Hi, I'm a Multimedia Engineering student. I am about to finish my dergree and I'm already thinking about what topic to cover in my final college project.
      I'm interested in the procedural animation with c++ and OpenGL of creatures, something like a spider for example. Can someone tell me what are the issues I should investigate to carry it out? I understand that it has some dependence on artificial intelligence but I do not know to what extent. Can someone help me to find information about it? Thank you very much.
       
      Examples: 
      - Procedural multi-legged walking animation
      - Procedural Locomotion of Multi-Legged Characters in Dynamic Environments
    • By Lewa
      So, i'm still on my quest to unterstanding the intricacies of HDR and implementing this into my engine. Currently i'm at the step to implementing tonemapping. I stumbled upon this blogposts:
      http://filmicworlds.com/blog/filmic-tonemapping-operators/
      http://frictionalgames.blogspot.com/2012/09/tech-feature-hdr-lightning.html
      and tried to implement some of those mentioned tonemapping methods into my postprocessing shader.
      The issue is that none of them creates the same results as shown in the blogpost which definitely has to do with the initial range in which the values are stored in the HDR buffer. For simplicity sake i store the values between 0 and 1 in the HDR buffer (ambient light is 0.3, directional light is 0.7)
      This is the tonemapping code:
      vec3 Uncharted2Tonemap(vec3 x) { float A = 0.15; float B = 0.50; float C = 0.10; float D = 0.20; float E = 0.02; float F = 0.30; return ((x*(A*x+C*B)+D*E)/(x*(A*x+B)+D*F))-E/F; } This is without the uncharted tonemapping:
      This is with the uncharted tonemapping:
      Which makes the image a lot darker.
      The shader code looks like this:
      void main() { vec3 color = texture2D(texture_diffuse, vTexcoord).rgb; color = Uncharted2Tonemap(color); //gamma correction (use only if not done in tonemapping code) color = gammaCorrection(color); outputF = vec4(color,1.0f); } Now, from my understanding is that tonemapping should bring the range down from HDR to 0-1.
      But the output of the tonemapping function heavily depends on the initial range of the values in the HDR buffer. (You can't expect to set the sun intensity the first time to 10 and the second time to 1000 and excpect the same result if you feed that into the tonemapper.) So i suppose that this also depends on the exposure which i have to implement?
      To check this i plotted the tonemapping curve:
      You can see that the curve goes only up to around to a value of 0.21 (while being fed a value of 1) and then basically flattens out. (which would explain why the image got darker.)
       
      My guestion is: In what range should the values in the HDR buffer be which then get tonemapped? Do i have to bring them down to a range of 0-1 by multiplying with the exposure?
      For example, if i increase the values of the light by 10 (directional light would be 7 and ambient light 3) then i would need to divide HDR values by 10 in order to get a value range of 0-1 which then could be fed into the tonemapping curve. Is that correct?
    • By nOoNEE
      i am reading this book : link
      in the OpenGL Rendering Pipeline section there is a picture like this: link
      but the question is this i dont really understand why it is necessary to turn pixel data in to fragment and then fragment into pixel could please give me a source or a clear Explanation that why it is necessary ? thank you so mu
       
       
    • By Inbar_xz
      I'm using the OPENGL with eclipse+JOGL.
      My goal is to create movement of the camera and the player.
      I create main class, which create some box in 3D and hold 
      an object of PlayerAxis.
      I create PlayerAxis class which hold the axis of the player.
      If we want to move the camera, then in the main class I call to 
      the func "cameraMove"(from PlayerAxis) and it update the player axis.
      That's work good.
      The problem start if I move the camera on 2 axis, 
      for example if I move with the camera right(that's on the y axis)
      and then down(on the x axis) -
      in some point the move front is not to the front anymore..
      In order to move to the front, I do
      player.playerMoving(0, 0, 1);
      And I learn that in order to keep the front move, 
      I need to convert (0, 0, 1) to the player axis, and then add this.
      I think I dont do the convert right.. 
      I will be glad for help!

      Here is part of my PlayerAxis class:
       
      //player coordinate float x[] = new float[3]; float y[] = new float[3]; float z[] = new float[3]; public PlayerAxis(float move_step, float angle_move) { x[0] = 1; y[1] = 1; z[2] = -1; step = move_step; angle = angle_move; setTransMatrix(); } public void cameraMoving(float angle_step, String axis) { float[] new_x = x; float[] new_y = y; float[] new_z = z; float alfa = angle_step * angle; switch(axis) { case "x": new_z = addVectors(multScalar(z, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(z, SIN(alfa))); break; case "y": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(z, SIN(alfa))); new_z = subVectors(multScalar(z, COS(alfa)), multScalar(x, SIN(alfa))); break; case "z": new_x = addVectors(multScalar(x, COS(alfa)), multScalar(y, SIN(alfa))); new_y = subVectors(multScalar(y, COS(alfa)), multScalar(x, SIN(alfa))); } x = new_x; y = new_y; z = new_z; normalization(); } public void playerMoving(float x_move, float y_move, float z_move) { float[] move = new float[3]; move[0] = x_move; move[1] = y_move; move[2] = z_move; setTransMatrix(); float[] trans_move = transVector(move); position[0] = position[0] + step*trans_move[0]; position[1] = position[1] + step*trans_move[1]; position[2] = position[2] + step*trans_move[2]; } public void setTransMatrix() { for (int i = 0; i < 3; i++) { coordiTrans[0][i] = x[i]; coordiTrans[1][i] = y[i]; coordiTrans[2][i] = z[i]; } } public float[] transVector(float[] v) { return multiplyMatrixInVector(coordiTrans, v); }  
      and in the main class i have this:
       
      public void keyPressed(KeyEvent e) { if (e.getKeyCode()== KeyEvent.VK_ESCAPE) { System.exit(0); //player move } else if (e.getKeyCode()== KeyEvent.VK_W) { //front //moveAmount[2] += -0.1f; player.playerMoving(0, 0, 1); } else if (e.getKeyCode()== KeyEvent.VK_S) { //back //moveAmount[2] += 0.1f; player.playerMoving(0, 0, -1); } else if (e.getKeyCode()== KeyEvent.VK_A) { //left //moveAmount[0] += -0.1f; player.playerMoving(-1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_D) { //right //moveAmount[0] += 0.1f; player.playerMoving(1, 0, 0); } else if (e.getKeyCode()== KeyEvent.VK_E) { //moveAmount[0] += 0.1f; player.playerMoving(0, 1, 0); } else if (e.getKeyCode()== KeyEvent.VK_Q) { //moveAmount[0] += 0.1f; player.playerMoving(0, -1, 0); //camera move } else if (e.getKeyCode()== KeyEvent.VK_I) { //up player.cameraMoving(1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_K) { //down player.cameraMoving(-1, "x"); } else if (e.getKeyCode()== KeyEvent.VK_L) { //right player.cameraMoving(-1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_J) { //left player.cameraMoving(1, "y"); } else if (e.getKeyCode()== KeyEvent.VK_O) { //right round player.cameraMoving(-1, "z"); } else if (e.getKeyCode()== KeyEvent.VK_U) { //left round player.cameraMoving(1, "z"); } }  
      finallt found it.... i confused with the transformation matrix row and col. thanks anyway!
    • By Lewa
      So, i'm currently trying to implement an SSAO shader from THIS tutorial and i'm running into a few issues here.
      Now, this SSAO method requires view space positions and normals. I'm storing the normals in my deferred renderer in world-space so i had to do a conversion and reconstruct the position from the depth buffer.
      And something there goes horribly wrong (which has probably to do with worldspace to viewspace transformations).
      (here is the full shader source code if someone wants to take a look at it)
      Now, i suspect that the normals are the culprit.
      vec3 normal = ((uNormalViewMatrix*vec4(normalize(texture2D(sNormals, vTexcoord).rgb),1.0)).xyz); "sNormals" is a 2D texture which stores the normals in world space in a RGB FP16 buffer.
      Now i can't use the camera viewspace matrix to transform the normals into viewspace as the cameras position isn't set at (0,0,0), thus skewing the result.
      So what i did is to create a new viewmatrix specifically for this normal without the position at vec3(0,0,0);
      //"camera" is the camera which was used for rendering the normal buffer renderer.setUniform4m(ressources->shaderSSAO->getUniform("uNormalViewMatrix"), glmExt::createViewMatrix(glm::vec3(0,0,0),camera.getForward(),camera.getUp())//parameters are (position,forwardVector,upVector) ); Though i have the feeling this is the wrong approach. Is this right or is there a better/correct way of transforming a world space normal into viewspace?
    • By HawkDeath
      Hi,
      I'm trying mix two textures using own shader system, but I have a problem (I think) with uniforms.
      Code: https://github.com/HawkDeath/shader/tree/test
      To debug I use RenderDocs, but I did not receive good results. In the first attachment is my result, in the second attachment is what should be.
      PS. I base on this tutorial https://learnopengl.com/Getting-started/Textures.


    • By norman784
      I'm having issues loading textures, as I'm clueless on how to handle / load images maybe I missing something, but the past few days I just google a lot to try to find a solution. Well theres two issues I think, one I'm using Kotlin Native (EAP) and OpenGL wrapper / STB image, so I'm not quite sure wheres the issue, if someone with more experience could give me some hints on how to solve this issue?
      The code is here, if I'm not mistaken the workflow is pretty straight forward, stbi_load returns the pixels of the image (as char array or byte array) and you need to pass those pixels directly to glTexImage2D, so a I'm missing something here it seems.
      Regards
    • By Hashbrown
      I've noticed in most post processing tutorials several shaders are used one after another: one for bloom, another for contrast, and so on. For example: 
      postprocessing.quad.bind() // Effect 1 effect1.shader.bind(); postprocessing.texture.bind(); postprocessing.quad.draw(); postprocessing.texture.unbind(); effect1.shader.unbind(); // Effect 2 effect2.shader.bind(); // ...and so on postprocessing.quad.unbind() Is this good practice, how many shaders can I bind and unbind before I hit performance issues? I'm afraid I don't know what the good practices are in open/webGL regarding binding and unbinding resources. 
      I'm guessing binding many shaders at post processing is okay since the scene has already been updated and I'm just working on a quad and texture at that moment. Or is it more optimal to put shader code in chunks and bind less frequently? I'd love to use several shaders at post though. 
      Another example of what I'm doing at the moment:
      1) Loop through GameObjects, bind its phong shader (send color, shadow, spec, normal samplers), unbind all.
      2) At post: bind post processor quad, and loop/bind through different shader effects, and so on ...
      Thanks all! 
    • By phil67rpg
      void collision(int v) { collision_bug_one(0.0f, 10.0f); glutPostRedisplay(); glutTimerFunc(1000, collision, 0); } void coll_sprite() { if (board[0][0] == 1) { collision(0); flag[0][0] = 1; } } void erase_sprite() { if (flag[0][0] == 1) { glColor3f(0.0f, 0.0f, 0.0f); glBegin(GL_POLYGON); glVertex3f(0.0f, 10.0f, 0.0f); glVertex3f(0.0f, 9.0f, 0.0f); glVertex3f(1.0f, 9.0f, 0.0f); glVertex3f(1.0f, 10.0f, 0.0f); glEnd(); } } I am using glutTimerFunc to wait a small amount of time to display a collision sprite before I black out the sprite. unfortunately my code only blacks out the said sprite without drawing the collision sprite, I have done a great deal of research on the glutTimerFunc and  animation.
  • Advertisement
  • Popular Now

  • Forum Statistics

    • Total Topics
      631382
    • Total Posts
      2999679
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

Participate in the game development conversation and more when you create an account on GameDev.net!

Sign me up!