• Advertisement
Sign in to follow this  

OpenGL glVertexAttribPointer giving GL_INVALID_OPERATION

This topic is 2328 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I don't get it. Everything was working fine earlier, now the following code fragment won't even work. According to gDEbugger, I get a GL_INVALID_OPERATION on the glVertexAttribPointer() call. But I don't see anything wrong with it.

Note: I'm using the GLFW and GLEW libraries.


[code]

struct quadFormat_s
{
float x;
float y;
float z;
float u;
float v;
};

quadFormat_s quadVertex[] = {
{-1.0f, -1.0f, 1.0f, 0.0f, 1.0f},
{-1.0f, 1.0f, 1.0f, 0.0f, 0.0f},
{1.0f, 1.0f, 1.0f, 1.0f, 0.0f},
{1.0f, -1.0f, 1.0f, 1.0f, 1.0f}
};



glfwInit();

glfwOpenWindowHint( GLFW_OPENGL_VERSION_MAJOR, 3 );
glfwOpenWindowHint( GLFW_OPENGL_VERSION_MINOR, 2 );
glfwOpenWindowHint( GLFW_OPENGL_FORWARD_COMPAT, true );
glfwOpenWindowHint( GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE );

glfwOpenWindow( 1024, 768, 8, 8, 8, 8, 24, 0, GLFW_WINDOW );

glewInit();

glGenBuffers( 1, &vboVertexQuad );
glBindBuffer( GL_ARRAY_BUFFER, vboVertexQuad );
glBufferData( GL_ARRAY_BUFFER, quadVertexCount*sizeof(quadFormat_s), quadVertex, GL_STATIC_DRAW );
glVertexAttribPointer( 0, 3, GL_FLOAT, GL_FALSE, sizeof(quadFormat_s), reinterpret_cast<void*>(0 + 0) );
[/code]

The weird thing is, it starts working fine if I change my OpenGL context to 3.1 (instead of 3.2) and backward compatible (instead of forward compatible).

Am I missing something obvious, or has my computer gone crazy?

Share this post


Link to post
Share on other sites
Advertisement
If you are using core profile on GL 3.2, then you must use VAO when you call glBindBuffer and glVertexAttribPointer.

Share this post


Link to post
Share on other sites
[quote name='V-man' timestamp='1315138606' post='4857452']
If you are using core profile on GL 3.2, then you must use VAO when you call glBindBuffer and glVertexAttribPointer.
[/quote]
VAO? Vertex arrays? I thought vertex arrays were older and got replaced by VBOs. Weird. Do you have any links where I can get more info on these functions requiring VAOs? The OpenGL man page doesn't mention it as far as I can tell.

Share this post


Link to post
Share on other sites
[quote name='i_luv_cplusplus' timestamp='1315125222' post='4857408']
Where is your glewInit() call? It should be before glBindBuffer and after glfwOpenWindow
[/quote]
Woops, looks like I accidentally cut that out while trying to find the minimum amount of code to reproduce the problem. Even with that line, I get the same result. I've edited my code snippet.

Share this post


Link to post
Share on other sites
[quote name='Nairou' timestamp='1315150387' post='4857511']
[quote name='V-man' timestamp='1315138606' post='4857452']
If you are using core profile on GL 3.2, then you must use VAO when you call glBindBuffer and glVertexAttribPointer.
[/quote]
VAO? Vertex arrays? I thought vertex arrays were older and got replaced by VBOs. Weird. Do you have any links where I can get more info on these functions requiring VAOs? The OpenGL man page doesn't mention it as far as I can tell.
[/quote]
To clarify the terms here:
[list][*]Vertex arrays (VA) is the mechanism by which you store objects in arrays and draw vertices in batches. Vertex arrays are most certainly not old and replaced. It is, in fact, the [i]only[/i] way to draw something today.[*]Vertex buffer object (VBO) is an object that stores vertex array data. It is the OpenGL equivalent to, for example, [i]new[][/i] or [i]malloc[/i]. Its only purpose is to provide storage for your vertex arrays.[*]Vertex array objects (VAO) is an object that stores VBO bindings. You can see it as an object that stores calls to glVertexAttribPointer and glEnableVertexAttribArray so you can quickly re-bind and enable a set of arrays by binding the VAO object, instead of binding several VBO objects and resetting pointers for ever attribute.[/list] All three of these are quite useless on their own today, but they all exist to work together. For example, in previous versions you could use VAs alone by passing pointers to your own memory. That is not possible anymore, and now you need store the vertex arrays in a VBO instead.

The functions for VAO you want to look for are glGenVertexArrays and glBindVertexArray.

Share this post


Link to post
Share on other sites
http://www.opengl.org/wiki/Tutorial1:_Rendering_shapes_with_glDrawRangeElements,_VAO,_VBO,_shaders_%28C%2B%2B_/_freeGLUT%29

Share this post


Link to post
Share on other sites
@Brother Bob
Thanks for the clarification! I don't know why the OpenGL documentation is so vague, the man pages for those two functions you mention say almost nothing.

However, I was able to find a wiki article ([url="http://www.opengl.org/wiki/Tutorial:_OpenGL_3.1_The_First_Triangle_(C%2B%2B/Win)"]http://www.opengl.or...e_(C%2B%2B/Win)[/url]) which illustrated it pretty well.

My test program is once again working normally. Thanks!

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Now

  • Advertisement
  • Similar Content

    • By Balma Alparisi
      i got error 1282 in my code.
      sf::ContextSettings settings; settings.majorVersion = 4; settings.minorVersion = 5; settings.attributeFlags = settings.Core; sf::Window window; window.create(sf::VideoMode(1600, 900), "Texture Unit Rectangle", sf::Style::Close, settings); window.setActive(true); window.setVerticalSyncEnabled(true); glewInit(); GLuint shaderProgram = createShaderProgram("FX/Rectangle.vss", "FX/Rectangle.fss"); float vertex[] = { -0.5f,0.5f,0.0f, 0.0f,0.0f, -0.5f,-0.5f,0.0f, 0.0f,1.0f, 0.5f,0.5f,0.0f, 1.0f,0.0f, 0.5,-0.5f,0.0f, 1.0f,1.0f, }; GLuint indices[] = { 0,1,2, 1,2,3, }; GLuint vao; glGenVertexArrays(1, &vao); glBindVertexArray(vao); GLuint vbo; glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(vertex), vertex, GL_STATIC_DRAW); GLuint ebo; glGenBuffers(1, &ebo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices,GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, false, sizeof(float) * 5, (void*)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 2, GL_FLOAT, false, sizeof(float) * 5, (void*)(sizeof(float) * 3)); glEnableVertexAttribArray(1); GLuint texture[2]; glGenTextures(2, texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageOne = new sf::Image; bool isImageOneLoaded = imageOne->loadFromFile("Texture/container.jpg"); if (isImageOneLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageOne->getSize().x, imageOne->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageOne->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageOne; glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); sf::Image* imageTwo = new sf::Image; bool isImageTwoLoaded = imageTwo->loadFromFile("Texture/awesomeface.png"); if (isImageTwoLoaded) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imageTwo->getSize().x, imageTwo->getSize().y, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageTwo->getPixelsPtr()); glGenerateMipmap(GL_TEXTURE_2D); } delete imageTwo; glUniform1i(glGetUniformLocation(shaderProgram, "inTextureOne"), 0); glUniform1i(glGetUniformLocation(shaderProgram, "inTextureTwo"), 1); GLenum error = glGetError(); std::cout << error << std::endl; sf::Event event; bool isRunning = true; while (isRunning) { while (window.pollEvent(event)) { if (event.type == event.Closed) { isRunning = false; } } glClear(GL_COLOR_BUFFER_BIT); if (isImageOneLoaded && isImageTwoLoaded) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture[1]); glUseProgram(shaderProgram); } glBindVertexArray(vao); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr); glBindVertexArray(0); window.display(); } glDeleteVertexArrays(1, &vao); glDeleteBuffers(1, &vbo); glDeleteBuffers(1, &ebo); glDeleteProgram(shaderProgram); glDeleteTextures(2,texture); return 0; } and this is the vertex shader
      #version 450 core layout(location=0) in vec3 inPos; layout(location=1) in vec2 inTexCoord; out vec2 TexCoord; void main() { gl_Position=vec4(inPos,1.0); TexCoord=inTexCoord; } and the fragment shader
      #version 450 core in vec2 TexCoord; uniform sampler2D inTextureOne; uniform sampler2D inTextureTwo; out vec4 FragmentColor; void main() { FragmentColor=mix(texture(inTextureOne,TexCoord),texture(inTextureTwo,TexCoord),0.2); } I was expecting awesomeface.png on top of container.jpg

    • By khawk
      We've just released all of the source code for the NeHe OpenGL lessons on our Github page at https://github.com/gamedev-net/nehe-opengl. code - 43 total platforms, configurations, and languages are included.
      Now operated by GameDev.net, NeHe is located at http://nehe.gamedev.net where it has been a valuable resource for developers wanting to learn OpenGL and graphics programming.

      View full story
    • By TheChubu
      The Khronos™ Group, an open consortium of leading hardware and software companies, announces from the SIGGRAPH 2017 Conference the immediate public availability of the OpenGL® 4.6 specification. OpenGL 4.6 integrates the functionality of numerous ARB and EXT extensions created by Khronos members AMD, Intel, and NVIDIA into core, including the capability to ingest SPIR-V™ shaders.
      SPIR-V is a Khronos-defined standard intermediate language for parallel compute and graphics, which enables content creators to simplify their shader authoring and management pipelines while providing significant source shading language flexibility. OpenGL 4.6 adds support for ingesting SPIR-V shaders to the core specification, guaranteeing that SPIR-V shaders will be widely supported by OpenGL implementations.
      OpenGL 4.6 adds the functionality of these ARB extensions to OpenGL’s core specification:
      GL_ARB_gl_spirv and GL_ARB_spirv_extensions to standardize SPIR-V support for OpenGL GL_ARB_indirect_parameters and GL_ARB_shader_draw_parameters for reducing the CPU overhead associated with rendering batches of geometry GL_ARB_pipeline_statistics_query and GL_ARB_transform_feedback_overflow_querystandardize OpenGL support for features available in Direct3D GL_ARB_texture_filter_anisotropic (based on GL_EXT_texture_filter_anisotropic) brings previously IP encumbered functionality into OpenGL to improve the visual quality of textured scenes GL_ARB_polygon_offset_clamp (based on GL_EXT_polygon_offset_clamp) suppresses a common visual artifact known as a “light leak” associated with rendering shadows GL_ARB_shader_atomic_counter_ops and GL_ARB_shader_group_vote add shader intrinsics supported by all desktop vendors to improve functionality and performance GL_KHR_no_error reduces driver overhead by allowing the application to indicate that it expects error-free operation so errors need not be generated In addition to the above features being added to OpenGL 4.6, the following are being released as extensions:
      GL_KHR_parallel_shader_compile allows applications to launch multiple shader compile threads to improve shader compile throughput WGL_ARB_create_context_no_error and GXL_ARB_create_context_no_error allow no error contexts to be created with WGL or GLX that support the GL_KHR_no_error extension “I’m proud to announce OpenGL 4.6 as the most feature-rich version of OpenGL yet. We've brought together the most popular, widely-supported extensions into a new core specification to give OpenGL developers and end users an improved baseline feature set. This includes resolving previous intellectual property roadblocks to bringing anisotropic texture filtering and polygon offset clamping into the core specification to enable widespread implementation and usage,” said Piers Daniell, chair of the OpenGL Working Group at Khronos. “The OpenGL working group will continue to respond to market needs and work with GPU vendors to ensure OpenGL remains a viable and evolving graphics API for all its customers and users across many vital industries.“
      The OpenGL 4.6 specification can be found at https://khronos.org/registry/OpenGL/index_gl.php. The GLSL to SPIR-V compiler glslang has been updated with GLSL 4.60 support, and can be found at https://github.com/KhronosGroup/glslang.
      Sophisticated graphics applications will also benefit from a set of newly released extensions for both OpenGL and OpenGL ES to enable interoperability with Vulkan and Direct3D. These extensions are named:
      GL_EXT_memory_object GL_EXT_memory_object_fd GL_EXT_memory_object_win32 GL_EXT_semaphore GL_EXT_semaphore_fd GL_EXT_semaphore_win32 GL_EXT_win32_keyed_mutex They can be found at: https://khronos.org/registry/OpenGL/index_gl.php
      Industry Support for OpenGL 4.6
      “With OpenGL 4.6 our customers have an improved set of core features available on our full range of OpenGL 4.x capable GPUs. These features provide improved rendering quality, performance and functionality. As the graphics industry’s most popular API, we fully support OpenGL and will continue to work closely with the Khronos Group on the development of new OpenGL specifications and extensions for our customers. NVIDIA has released beta OpenGL 4.6 drivers today at https://developer.nvidia.com/opengl-driver so developers can use these new features right away,” said Bob Pette, vice president, Professional Graphics at NVIDIA.
      "OpenGL 4.6 will be the first OpenGL release where conformant open source implementations based on the Mesa project will be deliverable in a reasonable timeframe after release. The open sourcing of the OpenGL conformance test suite and ongoing work between Khronos and X.org will also allow for non-vendor led open source implementations to achieve conformance in the near future," said David Airlie, senior principal engineer at Red Hat, and developer on Mesa/X.org projects.

      View full story
    • By _OskaR
      Hi,
      I have an OpenGL application but without possibility to wite own shaders.
      I need to perform small VS modification - is possible to do it in an alternative way? Do we have apps or driver modifictions which will catch the shader sent to GPU and override it?
    • By xhcao
      Does sync be needed to read texture content after access texture image in compute shader?
      My simple code is as below,
      glUseProgram(program.get());
      glBindImageTexture(0, texture[0], 0, GL_FALSE, 3, GL_READ_ONLY, GL_R32UI);
      glBindImageTexture(1, texture[1], 0, GL_FALSE, 4, GL_WRITE_ONLY, GL_R32UI);
      glDispatchCompute(1, 1, 1);
      // Does sync be needed here?
      glUseProgram(0);
      glBindFramebuffer(GL_READ_FRAMEBUFFER, framebuffer);
      glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
                                     GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, texture[1], 0);
      glReadPixels(0, 0, kWidth, kHeight, GL_RED_INTEGER, GL_UNSIGNED_INT, outputValues);
       
      Compute shader is very simple, imageLoad content from texture[0], and imageStore content to texture[1]. Does need to sync after dispatchCompute?
  • Advertisement