• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
Frongo

Find point on quadratic bezier at given distance

3 posts in this topic

Hey guys,

My problem is somewhat unique and I'm not really sure how to solve it in a non-iterative fashion:

1 - Given a starting point, ending point, and one control point for a bezier curve in 2D space, I need to find a point on the curve that is exactly at a given distance from the starting point of the curve.
2 - If there are multiple candidates (I believe there can be 2 at the most), I need to figure out which one comes first when walking through the path.

[attachment=5914:bezier distance.jpg]
1

Share this post


Link to post
Share on other sites
Let the Bezier control points be [font="CourierNew, monospace"](x0, y0), (x1, y1), (x2, y2). W[/font][font="CourierNew, monospace"]e wish to find the intersection of points that are a distance r[/font][font="CourierNew, monospace"] from (x0, y0).[/font][font="CourierNew, monospace"] In other words, the intersection of the circle (x - x0)^2 + (y - y0)^2 = r^2 [/font][font="CourierNew, monospace"]with the curve ((1 - t)^2 * x0 + 2(1 - t)t * x1 + t^2 * x2, [/font][font="CourierNew, monospace"](1 - t)^2 * y0 + 2(1 - t)t * y1 + t^2 * y2), 0 <= t <= 1.[/font][font="CourierNew, monospace"]
[/font]
[font="CourierNew, monospace"]Substituting this in,[/font][font="CourierNew, monospace"]
[/font]
[font="CourierNew, monospace"]([/font][font="CourierNew, monospace"](1 - t)^2 * x0 + 2(1 - t)t * x1 + t^2 * x2 - x0)^2 + ([/font][font="CourierNew, monospace"](1 - t)^2 * y0 + 2(1 - t)t * y1 + t^2 * y2 - y0)^2 = r^2[/font]
[font="CourierNew, monospace"]
[/font]
[font="CourierNew, monospace"]Solving for t will give you a quartic, (The 0 <= t <= 1 constraint actually means there are at most three valid solutions I believe, although I'm not sure if there is an easier way to solve such a special case) -- you can solve the quartic exactly although this is probably not a great idea.[/font] Much easier would be to apply newtons method etc.
2

Share this post


Link to post
Share on other sites
Ahh, I was hoping to avoid that quartic but I guess this is the only way to do it. Unfortunately that would be too expensive to implement in our particular project so I've come up with another (less math intensive) solution for the greater problem.

I now know where to come for my math questions/problems.

Thanks
0

Share this post


Link to post
Share on other sites
You could do a brute force method. Bezier subdivision is faster than using quartic equations and fairly easy to code. You would have to test the distance for each new point, but the Manhattan distance should get you a close enough candidate to do further testing.
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0