• Advertisement
Sign in to follow this  

OpenGL opengl + windows 7

This topic is 2259 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

i have a number of programs whit openGL

under windows 95 they work good

under windows 7 they give strange results


what is the source of this

how do i fix this

Share this post


Link to post
Share on other sites
Advertisement

i have a number of programs whit openGL

under windows 95 they work good

under windows 7 they give strange results


what is the source of this

how do i fix this


How old are those applications ? Do they work with Win2k/XP ?
What kind of "strange results" do you get ?

Share this post


Link to post
Share on other sites
There are no problems with OpenGL and Windows 7. If you're getting strange results it's a case of either a program bug or a bad driver.

Share this post


Link to post
Share on other sites
the programs where made whit devc++

they are older then jun 2011

i got [ sometimes ] a white screen or when i used a messagebox

it did not close when [OK] was pressed

but the program ended atruptly

Share this post


Link to post
Share on other sites
That sounds more like bad code than a problem related to OpenGL. Do you have the source available? If not, I don't think there's much you can do.

Share this post


Link to post
Share on other sites
If it's Dev-C++ it may be the case that the compiler just produced bad code that Windows 95 was more tolerant of; Dev-C++ has a long list of outstanding bugs, uses an older compiler, and is not going to be fixed as it's a dead project. Converting the project to MSVC (one of the Express versions should be sufficient) or a recent Code::Blocks and recompiling may be all that's required to fix it (I've personally fixed MSVC 6 projects that refused to run on Win 7 by just recompiling them in 2008 so I believe it's worth a try).

Share this post


Link to post
Share on other sites
so i think the best i can do is switch the code

to vc++2008

? : how and what and where must i do in vc++2008

to activate openGL



here is a code example of me
all is in one file because while splitting the code i got error's
there is a lot of REM because i reuse my code a lot
[ i know this is ugly but it worked in windowsXP ]
the i did not put there

if your IDE has a seartch function you can skip throu the code
whit sceartching for @code parts


/*
opengl vr demonstration
version 28-12-2010
blua tigro

code parts :
includes
variables
functions
math
3dengine
shapes
avatars
moves
game
opengl
windows
*/

[url=""]//@includes

#include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
//#include <gl\glaux.h> // Header File For The Glaux Library

#include <math.h>
#include <ctime>
#include <cstdlib>

//@variables
#define FRAME_TIMER 1

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

HDC hdc ;

bool left_button ;
bool right_button ;
int mouse_x , mouse_y ;
int winx , winy ;
bool key_shift ;
bool keys[ 256 ] ; // Array Used For The Keyboard Routine
bool active = TRUE ; // Window Active Flag Set To TRUE By Default
bool fullscreen = TRUE ; // Fullscreen Flag Set To Fullscreen Mode By Default
int tel , tel2 ;

//child axes
const int XYZ = 0 ;
const int XZY = 1 ;
const int YXZ = 2 ;
const int YZX = 3 ;
const int ZXY = 4 ;
const int ZYX = 5 ;

//body link nr's
const int body = 0 ;
const int leg = 1 ;
const int knee = 2 ;
const int enkle = 3 ;
const int arm = 4 ;
const int elbow = 5 ;
const int wrist = 6 ;
const int neck = 7 ;
const int right = 10 ;
//insect body nr's
const int ibody = 0 ;
const int ileg = 1 ;
const int iknee = 6 ;
const int iarm = 11 ;
const int ielbow = 16 ;
const int ifinger = 21 ;
const int ithumb = 22 ;
const int itail = 23 ;
const int iright = 50 ;


GLfloat rtri; // Angle For The Triangle ( NEW )
GLfloat rquad; // Angle For The Quad ( NEW )
//light colors
GLfloat BLACK[] =
{ 0.0f , 0.0f , 0.0f , 1.0f } ;
GLfloat WHITE[] =
{ 1.0f , 1.0f , 1.0f , 1.0f } ;
const int MAZE_MAX = 30 ;
GLfloat RED_LIGHT_LOC[] =
{ 86.0f , 300.0f , 50.0f
, 0.0f } ;
GLfloat GREEN_LIGHT_LOC[] =
{ 0.0f , 300.0f , 100.0f
, 0.0f } ;
GLfloat BLUE_LIGHT_LOC[] =
{ -86.0f , 300.0f , 50.0f
, 0.0f } ;
GLfloat RED[] =
{ 1.0f , 0.0f , 0.0f , 1.0f } ;
GLfloat GREEN[] =
{ 0.0f , 1.0f , 0.0f , 1.0f } ;
GLfloat LGREEN[] =
{ 0.0f , 0.7f , 0.0f , 1.0f } ;
GLfloat YELLOW[] =
{ 1.0f , 1.0f , 0.0f , 1.0f } ;
GLfloat BLUE[] =
{ 0.0f , 0.0f , 1.0f , 1.0f } ;
GLfloat MAGENTA[] =
{ 1.0f , 0.0f , 1.0f , 1.0f } ;
GLfloat CYAN[] =
{ 0.0f , 1.0f , 1.0f , 1.0f } ;
GLfloat GRAY[] =
{ 0.5f , 0.5f , 0.5f , 1.0f } ;
GLfloat FOG_CLR[] =
{ 0.5f , 0.5f , 1.0f , 1.0f } ;
const int M = 1 ;
const int O = 2 ;
const int I = 0 ;
int MAZE[ MAZE_MAX ][ MAZE_MAX ] ;
struct item2d
{
GLfloat x , y , z ;
GLfloat dx , dy , dz ;
GLfloat angle ;
int state , tel ;
} ;
const int Qmax = 16 ;
item2d human , ghost , Qbe[ Qmax ] ;
struct F3D
{
GLfloat x , y , z ;
} ;
const int limmax = 200 ;
F3D sk[ limmax ] ;
const int TREE_MAX = 100 ;
F3D tree[ TREE_MAX ] ;
GLfloat pnt[ 255 ][ 3 ] ;
struct CBox
{
F3D m , d ;
} ;
CBox box ;
//@functions
//math
GLfloat rnd() ;
GLfloat rndrange( GLfloat min , GLfloat max ) ;
GLfloat lenght( GLfloat x
, GLfloat y , GLfloat z ) ;
//3dengine
void child(
GLfloat x , GLfloat y , GLfloat z
, int lim , int ax ) ;
void setangle( int lim
, GLfloat x , GLfloat y , GLfloat z ) ;
GLfloat pend(
double fase , double amp , double add ) ;
GLfloat lenght( GLfloat x
, GLfloat y , GLfloat z ) ;
//shapes
int rgb( int r , int g , int b ) ;
int rainbow( GLfloat deg ) ;
int mix( int c1
, GLfloat f , int c2 ) ;
void setbox(
GLfloat mx , GLfloat my , GLfloat mz
, GLfloat dx , GLfloat dy , GLfloat dz ) ;
void setcolor( int clr ) ;
void point( int no
, GLfloat x , GLfloat y , GLfloat z ) ;
void tri( int p1 , int p2 , int p3 ) ;
void quad( int p1 , int p2 , int p3 , int p4 ) ;
void colorcube() ;
void half( int clr1 , int clr2 ) ;
void cube1( int clr ) ;
void cube( int left , int bottom
, int front
, int r , int up , int back ) ;
void piramid(
GLfloat a , GLfloat b , GLfloat c ) ;
void torus( int sides ) ;
//avatars
void man( GLfloat x , GLfloat y
, GLfloat z , GLfloat xz , int clr ) ;
void dog( GLfloat x , GLfloat y
, GLfloat z , GLfloat xz , int clr ) ;
void bug( GLfloat x , GLfloat y
, GLfloat z , GLfloat xz , int clr ) ;
void fish( GLfloat x , GLfloat y
, GLfloat z , GLfloat xz , int clr ) ;
//moves
void walk2( GLfloat fase , GLfloat amp ) ;
void walk4( GLfloat fase , GLfloat amp ) ;
void walkbug(
GLfloat fase , GLfloat amp , bool r ) ;
//game
void initScene() ;
int DrawGLScene( GLvoid ) ;
//opengl + windows
void setlight( int no
, GLfloat* loc , GLfloat* clr ) ;
void setmat( GLfloat* ambiant
, GLfloat* difuse
, GLfloat* specular
, GLfloat shine ) ;
void setfog( GLfloat min , GLfloat max
, int mode , GLfloat* clr , GLfloat dens ) ;
int InitGL( GLvoid ) ;
LRESULT CALLBACK WndProc( HWND
, UINT , WPARAM , LPARAM ) ; // Declaration For WndProc
GLvoid ReSizeGLScene( GLsizei width
, GLsizei height ) ; // Resize And Initialize The GL Window
GLvoid KillGLWindow( GLvoid ) ;
int InitGL( GLvoid ) ; // All Setup For OpenGL Goes Here
//@math
GLfloat rnd()
{
return (GLfloat) rand()
/ (GLfloat) RAND_MAX ;

}
GLfloat rndrange( GLfloat min , GLfloat max )
{
return rnd() * ( max - min ) + min ;
}
GLfloat lenght( GLfloat x
, GLfloat y , GLfloat z )
{
return (GLfloat)sqrt( x * x + y * y + z * z ) ;
}
GLfloat post( GLfloat x )
{
if ( x < 0 ) return 0 ;
return x ;
}
//@3dengine
void child(
GLfloat x , GLfloat y , GLfloat z
, int lim , int ax )
{
if ( lim < 0 && lim > limmax ) return ;
glTranslatef( x , y , z ) ; // Move Left 1.5 Units And Into The Screen 6.0
switch( ax )
{
case XYZ :
glRotatef( sk[ lim ].x , 1,0,0 ) ;
glRotatef( sk[ lim ].y , 0,1,0 ) ;
glRotatef( sk[ lim ].z , 0,0,1 ) ;
break ;
case XZY :
glRotatef( sk[ lim ].y , 0,1,0 ) ;
glRotatef( sk[ lim ].z , 0,0,1 ) ;
glRotatef( sk[ lim ].x , 1,0,0 ) ;
break ;
case YXZ :
glRotatef( sk[ lim ].y , 0,1,0 ) ;
glRotatef( sk[ lim ].x , 1,0,0 ) ;
glRotatef( sk[ lim ].z , 0,0,1 ) ;
break ;
case YZX :
glRotatef( sk[ lim ].y , 0,1,0 ) ;
glRotatef( sk[ lim ].z , 0,0,1 ) ;
glRotatef( sk[ lim ].x , 1,0,0 ) ;
break ;
case ZXY :
glRotatef( sk[ lim ].z , 0,0,1 ) ;
glRotatef( sk[ lim ].x , 1,0,0 ) ;
glRotatef( sk[ lim ].y , 0,1,0 ) ;
break ;
case ZYX :
glRotatef( sk[ lim ].z , 0,0,1 ) ;
glRotatef( sk[ lim ].y , 0,1,0 ) ;
glRotatef( sk[ lim ].x , 1,0,0 ) ;
break ;
default : ;
}
}
void setangle( int lim
, GLfloat x , GLfloat y , GLfloat z )
{
sk[ lim ].x = x ;
sk[ lim ].y = y ;
sk[ lim ].z = z ;
}
GLfloat pend(
double fase , double amp , double add )
{
return (GLfloat)sin( fase * M_PI / 180 )
* amp + add ;
}

//@shapes
void setbox(
GLfloat mx , GLfloat my , GLfloat mz
, GLfloat dx , GLfloat dy , GLfloat dz )
{
box.m.x = mx ;
box.m.y = my ;
box.m.z = mz ;
box.d.x = dx ;
box.d.y = dy ;
box.d.z = dz ;
}
void point( int no
, GLfloat x , GLfloat y , GLfloat z )
{
pnt[ no ][0] = x ;
pnt[ no ][1] = y ;
pnt[ no ][2] = z ;
}
void tri( int p1 , int p2 , int p3 )
{
GLfloat x1 = pnt[ p1 ][0] ;
GLfloat y1 = pnt[ p1 ][1] ;
GLfloat z1 = pnt[ p1 ][2] ;
GLfloat x2 = pnt[ p2 ][0] ;
GLfloat y2 = pnt[ p2 ][1] ;
GLfloat z2 = pnt[ p2 ][2] ;
GLfloat x3 = pnt[ p3 ][0] ;
GLfloat y3 = pnt[ p3 ][1] ;
GLfloat z3 = pnt[ p3 ][2] ;
GLfloat nx = (y2-y1)*(z3-z1)-(y3-y1)*(z2-z1) ;
GLfloat ny = (z2-z1)*(x3-x1)-(z3-z1)*(x2-x1) ;
GLfloat nz = (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1) ;
glBegin( GL_TRIANGLES ) ;
glNormal3f( nx , ny , nz ) ;
glVertex3fv( pnt[ p1 ] ) ;
glVertex3fv( pnt[ p2 ] ) ;
glVertex3fv( pnt[ p3 ] ) ;
glEnd() ;
}
void quad( int p1 , int p2 , int p3 , int p4 )
{
GLfloat x1 = pnt[ p1 ][0] ;
GLfloat y1 = pnt[ p1 ][1] ;
GLfloat z1 = pnt[ p1 ][2] ;
GLfloat x2 = pnt[ p2 ][0] ;
GLfloat y2 = pnt[ p2 ][1] ;
GLfloat z2 = pnt[ p2 ][2] ;
GLfloat x3 = pnt[ p3 ][0] ;
GLfloat y3 = pnt[ p3 ][1] ;
GLfloat z3 = pnt[ p3 ][2] ;
GLfloat nx = (y2-y1)*(z3-z1)-(y3-y1)*(z2-z1) ;
GLfloat ny = (z2-z1)*(x3-x1)-(z3-z1)*(x2-x1) ;
GLfloat nz = (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1) ;
nx /= lenght( nx , ny , nz ) ;
ny /= lenght( nx , ny , nz ) ;
nz /= lenght( nx , ny , nz ) ;
glBegin( GL_QUADS ) ;
glNormal3f( nx , ny , nz ) ;
glVertex3fv( pnt[ p1 ] ) ;
glVertex3fv( pnt[ p2 ] ) ;
glVertex3fv( pnt[ p3 ] ) ;
glVertex3fv( pnt[ p4 ] ) ;
glEnd() ;
}
void colorcube()
{
point( 0 , box.m.x + box.d.x
, box.m.y+box.d.y , box.m.z+box.d.z);
point( 1 , box.m.x + box.d.x
, box.m.y+box.d.y , box.m.z-box.d.z);
point( 2 , box.m.x + box.d.x
, box.m.y-box.d.y , box.m.z+box.d.z);
point( 3 , box.m.x + box.d.x
, box.m.y-box.d.y , box.m.z-box.d.z);
point( 4 , box.m.x - box.d.x
, box.m.y+box.d.y , box.m.z+box.d.z);
point( 5 , box.m.x - box.d.x
, box.m.y+box.d.y , box.m.z-box.d.z);
point( 6 , box.m.x - box.d.x
, box.m.y-box.d.y , box.m.z+box.d.z);
point( 7 , box.m.x - box.d.x
, box.m.y-box.d.y , box.m.z-box.d.z);
quad( 0 , 1 , 3 , 2 ) ;
quad( 7 , 6 , 4 , 5 ) ;
quad( 1 , 3 , 7 , 5 ) ;
quad( 6 , 4 , 0 , 2 ) ;
quad( 0 , 1 , 5 , 4 ) ;
quad( 7 , 6 , 2 , 3 ) ;
}
void cube1( int clr )
{
cube( clr , clr , clr , clr , clr , clr ) ;
}
void cube( int left , int bottom
, int front
, int r , int up , int back )
{
GLfloat a = box.m.x ;
GLfloat b = box.m.y ;
GLfloat c = box.m.z ;
GLfloat x = box.d.x ;
GLfloat y = box.d.y ;
GLfloat q = box.d.z ;
glBegin( GL_QUADS ) ; // Draw A Quad
glNormal3f( 0.0f , 1.0f , 0.0f ) ; // Set The Color To Blue
glVertex3f( a + x , b + y , c - q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b + y , c - q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b + y , c + q ) ; // Top Right Of The Quad (Top)
glVertex3f( a + x , b + y , c + q ) ; // Top Right Of The Quad (Top)

glNormal3f( 0.0f , -1.0f , 0.0f ) ; // Set The Color To Blue
glVertex3f( a + x , b - y , c - q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b - y , c - q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b - y , c + q ) ; // Top Right Of The Quad (Top)
glVertex3f( a + x , b - y , c + q ) ; // Top Right Of The Quad (Top)
glNormal3f( 0.0f , 0.0f , -1.0f ) ; // Set The Color To Blue
glVertex3f( a + x , b + y , c - q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b + y , c - q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b - y , c - q ) ; // Top Right Of The Quad (Top)
glVertex3f( a + x , b - y , c - q ) ; // Top Right Of The Quad (Top)
// Set The Color To Red
glNormal3f( 0.0f , 0.0f , 1.0f ) ; // Set The Color To Blue
glVertex3f( a + x , b + y , c + q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b + y , c + q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b - y , c + q ) ; // Top Right Of The Quad (Top)
glVertex3f( a + x , b - y , c + q ) ; // Top Right Of The Quad (Top)
// Top Right Of The Quad (Top)
// Set The Color To Blue
glNormal3f( -1.0f , 0.0f , 0.0f ) ; // Set The Color To Blue
glVertex3f( a - x , b + y , c + q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b + y , c - q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b - y , c - q ) ; // Top Right Of The Quad (Top)
glVertex3f( a - x , b - y , c + q ) ; // Top Right Of The Quad (Top) // Set The Color To Violet
glNormal3f( 1.0f , 0.0f , 0.0f ) ; // Set The Color To Blue
glVertex3f( a + x , b + y , c - q ) ; // Top Right Of The Quad // Top Left Of The Quad (Right)
glVertex3f( a + x , b + y , c + q ) ; // Top Right Of The Quad (Top)
glVertex3f( a + x , b - y , c + q ) ; // Top Right Of The Quad (Top) // Bottom Right Of The Quad (Right)
glVertex3f( a + x , b - y , c - q ) ; // Top Right Of The Quad (Top)
glEnd(); // Done Drawing The Quad
}
void dodeca()
{}
void isoca()
{
glPushMatrix() ;
glTranslatef( box.m.x , box.m.y , box.m.z ) ;
glScalef( box.d.x,box.d.y,box.d.z ) ;

point( 1 , 0 , 0 , 1.118034 ) ;
point( 2 , 1 , 0 , .5 ) ;
point( 3 , .309017 , .95105654 , .5 ) ;
point( 4 , -.809017 , .58778524 , .5 ) ;
point( 5 , -.809017 , -.58778524 , .5 ) ;
point( 6 , .309017 , -.95105654 , .5 ) ;
point( 7 , .809017 , .58778524 , -.5 ) ;
point( 8 , -.309017 , .95105654 , -.5 ) ;
point( 9 , -1 , 0 , -.5 ) ;
point( 10 , -.309017 , -.95105654 , -.5 ) ;
point( 11 , .809017 , -.58778524 , -.5 ) ;
point( 12 , 0 , 0 , -1.118034 ) ;
tri( 1 , 2 , 3 ) ;
tri( 1 , 3 , 4 ) ;
tri( 1 , 4 , 5 ) ;
tri( 1 , 5 , 6 ) ;
tri( 1 , 6 , 2 ) ;
tri( 2 , 7 , 3 ) ;
tri( 3 , 7 , 8 ) ;
tri( 3 , 8 , 4 ) ;
tri( 4 , 8 , 9 ) ;
tri( 4 , 9 , 5 ) ;
tri( 5 , 9 , 10 ) ;
tri( 5 , 10 , 6 ) ;
tri( 6 , 10 , 11 ) ;
tri( 6 , 11 , 2 ) ;
tri( 2 , 11 , 7 ) ;
tri( 12 , 8 , 7 ) ;
tri( 12 , 9 , 8 ) ;
tri( 12 , 10 , 9 ) ;
tri( 12 , 11 , 10 ) ;
tri( 12 , 7 , 11 ) ;
glPopMatrix() ;
}
/*
void piramid(
GLfloat a , GLfloat b , GLfloat c )
{
glBegin(GL_TRIANGLES); // Start Drawing A Triangle
glColor3f( 1.0f , 0.0f , 0.0f ) ; // Red
glVertex3f( a+0.0f , b+1.0f , c+0.0f ) ; // Top Of Triangle (Front)
glColor3f( 0.0f , 1.0f , 0.0f ) ; // Green
glVertex3f( a-1.0f , b-1.0f , c+1.0f ) ; // Left Of Triangle (Front)
glColor3f( 0.0f , 0.0f , 1.0f ) ; // Blue
glVertex3f( a+1.0f , b-1.0f , c+1.0f ) ; // Right Of Triangle (Front)
glColor3f( 1.0f , 0.0f , 0.0f ) ; // Red
glVertex3f( a+0.0f , b+1.0f , c+0.0f ) ; // Top Of Triangle (Right)
glColor3f( 0.0f , 0.0f , 1.0f ) ; // Blue
glVertex3f( a+1.0f , b-1.0f , c+1.0f ) ; // Left Of Triangle (Right)
glColor3f( 0.0f , 1.0f , 0.0f ) ; // Green
glVertex3f( a+1.0f , b-1.0f , c-1.0f ) ; // Right Of Triangle (Right)
glColor3f( 1.0f , 0.0f , 0.0f ) ; // Red
glVertex3f( a+0.0f , b+1.0f , c+0.0f ) ; // Top Of Triangle (Back)
glColor3f( 0.0f , 1.0f , 0.0f ) ; // Green
glVertex3f( a+1.0f , b-1.0f , c-1.0f ) ; // Left Of Triangle (Back)
glColor3f( 0.0f , 0.0f , 1.0f ) ; // Blue
glVertex3f( a-1.0f , b-1.0f , c-1.0f ) ; // Right Of Triangle (Back)
glColor3f( 1.0f , 0.0f , 0.0f ) ; // Red
glVertex3f( a+0.0f , b+1.0f , c+0.0f ) ; // Top Of Triangle (Left)
glColor3f( 0.0f , 0.0f , 1.0f ) ; // Blue
glVertex3f( a-1.0f , b-1.0f , c-1.0f ) ; // Left Of Triangle (Left)
glColor3f( 0.0f , 1.0f , 0.0f ) ; // Green
glVertex3f( a-1.0f , b-1.0f , c+1.0f ) ; // Right Of Triangle (Left)
glEnd() ; // Done Drawing The Pyramid
}
*/
void torus( int a , int b )
{
double i , j , i2 , j2 ;
if ( a < 3 ) a = 3 ;
if ( a > 32 ) a = 32 ;
if ( b < 3 ) b = 3 ;
if ( b > 32 ) b = 32 ;
GLfloat mx , my , mz , dx , dy , dz ;
mx = box.m.x ;
my = box.m.y ;
mz = box.m.z ;
dx = box.d.x ;
dy = box.d.y ;
dz = box.d.z ;
for ( i = -M_PI
; i < M_PI
; i += M_PI / a * 2 )
{
i2 = i + M_PI / a * 2 ;
for ( j = -M_PI
; j < M_PI
; j += M_PI / b * 2 )
{
j2 = j + M_PI / b * 2 ;
point( 0
, mx + ( dx + dy * cos( i ) ) * cos( j )
, my + ( dx + dy * cos( i ) ) * sin( j )
, mz + sin( i ) * dz ) ;
point( 1
, mx + ( dx + dy * cos( i ) ) * cos( j2 )
, my + ( dx + dy * cos( i ) ) * sin( j2 )
, mz + sin( i ) * dz ) ;
point( 2
, mx + ( dx + dy * cos( i2 ) ) * cos( j2 )
, my + ( dx + dy * cos( i2 ) ) * sin( j2 )
, mz + sin( i2 ) * dz ) ;
point( 3
, mx + ( dx + dy * cos( i2 ) ) * cos( j )
, my + ( dx + dy * cos( i2 ) ) * sin( j )
, mz + sin( i2 ) * dz ) ;
quad( 0 , 1 , 2 , 3 ) ;
}
}
}
void elipse( int a , int b )
{
double i , j , i2 , j2 ;
if ( a < 3 ) a = 3 ;
if ( a > 32 ) a = 32 ;
if ( b < 3 ) b = 3 ;
if ( b > 32 ) b = 32 ;
GLfloat mx , my , mz , dx , dy , dz ;
mx = box.m.x ;
my = box.m.y ;
mz = box.m.z ;
dx = box.d.x ;
dy = box.d.y ;
dz = box.d.z ;
for ( i = -M_PI / 2
; i < M_PI / 2
; i += M_PI / a )
{
i2 = i + M_PI / a ;
for ( j = -M_PI
; j < M_PI
; j += M_PI / b * 2 )
{
j2 = j + M_PI / b * 2 ;
point( 0
, mx + dx * cos( i ) * cos( j )
, my + dy * cos( i ) * sin( j )
, mz + dz * sin( i ) ) ;
point( 1
, mx + dx * cos( i ) * cos( j2 )
, my + dy * cos( i ) * sin( j2 )
, mz + dz * sin( i ) ) ;
point( 2
, mx + dx * cos( i2 ) * cos( j2 )
, my + dy * cos( i2 ) * sin( j2 )
, mz + dz * sin( i2 ) ) ;
point( 3
, mx + dx * cos( i2 ) * cos( j )
, my + dy * cos( i2 ) * sin( j )
, mz + dz * sin( i2 ) ) ;
quad( 0 , 1 , 2 , 3 ) ;
}
}
}
void cilinder( int sides
,GLfloat dx , GLfloat dz
, bool top , bool bottom )
{
int i ;
GLfloat a , b ;
if ( sides < 3 ) sides = 3 ;
if ( sides > 32 ) sides = 32 ;
for ( i = 0 ; i < sides ; i++ )
{
a = i * M_PI * 2 / sides ;
b = ( i + 1 ) * M_PI * 2 / sides ;
point( 0
, box.m.x + sin( a ) * box.d.x
, box.m.y - box.d.y
, box.m.z + cos( a ) * box.d.z ) ;
point( 1
, box.m.x + sin( b ) * box.d.x
, box.m.y - box.d.y
, box.m.z + cos( b ) * box.d.z ) ;
point( 2
, box.m.x + sin( b ) * dx
, box.m.y + box.d.y
, box.m.z + cos( b ) * dz ) ;
point( 3
, box.m.x + sin( a ) * dx
, box.m.y + box.d.y
, box.m.z + cos( a ) * dz ) ;
quad( 0 , 1 , 2 , 3 ) ;
if ( top )
{
point( 0 , 0
, box.m.y + box.d.y , 0 ) ;
point( 1
, box.m.x + sin( a ) * dx
, box.m.y + box.d.y
, box.m.z + cos( a ) * dz ) ;
point( 2
, box.m.x + sin( b ) * dx
, box.m.y + box.d.y
, box.m.z + cos( b ) * dz ) ;
tri( 1 , 2 , 0 ) ;
}
if ( bottom )
{
point( 0 , 0
, box.m.y - box.d.y , 0 ) ;
point( 1
, box.m.x + sin( a ) * box.d.x
, box.m.y - box.d.y
, box.m.z + cos( a ) * box.d.z ) ;
point( 2
, box.m.x + sin( b ) * box.d.x
, box.m.y - box.d.y
, box.m.z + cos( b ) * box.d.z ) ;
tri( 2 , 1 , 0 ) ;
}
}
}

//@avartars
/*
void man( GLfloat x
, GLfloat y , GLfloat z , GLfloat xz
, int clr )
{
setangle( body , 0 , xz , 0 ) ;
glPushMatrix() ;
child( x , y , z , body , XYZ ) ;
setbox( 0,0,0 , .4,.1,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
setbox( 0,.3,0 , .1,.1,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
setbox( 0,.9,0 , .4,.4,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( .3,-.1,0 , leg , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , knee , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , enkle , XYZ ) ;
setbox( 0,-.2,-.1 , .1,.1,.2 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child( -.3,-.1,0 , leg+right , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , knee+right , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , enkle+right , XYZ ) ;
setbox( 0,-.2,-.1 , .1,.1,.2 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child( .6,1.4,0 , arm+right,XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , elbow+right,XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , wrist+right,XYZ) ;
setbox( 0,-.2,0 , .05,.15,.15 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child( -.6,1.4,0 , arm,XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , elbow,XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , wrist,XYZ) ;
setbox( 0,-.2,0 , .05,.15,.15 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child( 0,1.5,0 , neck , XYZ ) ;
setbox( 0,0.2,.0 , .2,.2,.2 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
setbox( 0,.2,-.25 , .05,.05,.05 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
setbox( .24,.2,0 , .02,.1,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
setbox( -.24,.2,0 , .01,.1,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
}
void dog( GLfloat x
, GLfloat y , GLfloat z , GLfloat xz
, int clr )
{
setangle( body , 0 , xz , 0 ) ;
glPushMatrix() ;
child( x,y,z , body , XYZ ) ;
setbox( 0,0.2,0 , .3,.3,.5 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( .3,-.1,.4 , leg , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , knee , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , enkle , XYZ ) ;
setbox( 0,-.2,-.1 , .1,.1,.2 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child( -.3,-.1,.4 , leg+right , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , knee+right , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , enkle , XYZ ) ;
setbox( 0,-.2,-.1 , .1,.1,.2 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child( .3,-.1,-.4 , leg , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , knee , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , enkle , XYZ ) ;
setbox( 0,-.2,-.1 , .1,.1,.2 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child( -.3,-.1,-.4 , leg+right , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , knee+right , XYZ ) ;
setbox( 0,-.4,0 , .1,.3,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,-.8,0 , enkle+right , XYZ ) ;
setbox( 0,-.2,-.1 , .1,.1,.2 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child( 0,.8,-.8 , neck , XYZ ) ;
setbox( 0,0,0 , .2,.2,.2 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
setbox( 0,-.2,-.2 , .15,.15,.15 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*160,clr*80) ;
setbox( 0,0,-.4 , .07,.07,.07 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
setbox( .24,-.1,0 , .02,.2,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
setbox( -.24,-.1,0 , .02,.2,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPushMatrix() ;
child( 0,.6,.6 , neck+right , XYZ ) ;
setbox( 0,.2,0 , .1,.2,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,.6,0, neck+right , XYZ ) ;
setbox( 0,.2,0 , .1,.2,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
}
*/
/*
void bugtail( int a , int max , int clr )
{
if ( a > max ) return ;
glPushMatrix() ;
child( 0,0,0.3 , itail + a , XYZ ) ;
setbox( 0,0,0.1 ,.1,.1,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
bugtail( a + 1 , max , clr ) ;
glPopMatrix() ;
}
*/
/*
void bug( GLfloat x
, GLfloat y , GLfloat z , GLfloat xz
, int clr )
{
setangle( ibody , 0 , xz , 0 ) ;
glPushMatrix() ;
child( x,y,z , ibody , XYZ ) ;
setbox( 0,0,0 , 0.3,0.1,.7 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,0,.6 , itail , XYZ ) ;
bugtail( 1 , 20 , clr ) ;
glPopMatrix() ;
int i ;
for( i = 0 ; i < 3 ; i++ )
{
glPushMatrix() ;
child(0.3,0,i*.6-.6 , ileg+i, XYZ ) ;
setbox(.6,0,0 , .4,.1,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child(1.2,0,0,iknee+i,XYZ) ;
setbox(0,-.6,0 , .1,.4,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child(-0.3,0,i*.6-.6
, ileg+i+iright, XYZ ) ;
setbox(-.6,0,0 , .4,.1,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child(-1.2,0,0
,iknee+i+iright,XYZ) ;
setbox(0,-.6,0 , .1,.4,.1 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
}
glPushMatrix() ;
child( .5,0,-.8 , iarm,XYZ ) ;
setbox( 0,0,-.6 , .1,.1,.4 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,0,-.9 , ielbow,XYZ ) ;
setbox( 0,0,-.6 , .1,.1,.4 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( .15,0,-.8,ifinger,XYZ ) ;
setbox( 0,0,-.8 , .1,.2,.4) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPushMatrix() ;
child( -.13,0,-.8,ithumb, XYZ ) ;
setbox( 0,0,-.8,.1,.1,.4 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
child( -.5,0,-.8 , iarm+iright,XYZ ) ;
setbox( 0,0,-.6 , .1,.1,.4 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( 0,0,-.9 , ielbow+iright,XYZ ) ;
setbox( 0,0,-.6 , .1,.1,.4 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPushMatrix() ;
child( -.15,0,-.8,ifinger+iright,XYZ ) ;
setbox( 0,0,-.8 , .1,.2,.4) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPushMatrix() ;
child( .13,0,-.8,ithumb+iright, XYZ ) ;
setbox( 0,0,-.8,.1,.1,.4 ) ;
cube(clr*255,clr*160,clr*80
,clr*255,clr*180,clr*80) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
}
*/
/*
void fish( GLfloat x , GLfloat y , GLfloat z
, GLfloat xz , int clr )
{
setangle( body , 0 , xz , 0 ) ;
glPushMatrix() ;
child( x,y,z , body , XYZ ) ;
setbox( 0,0,0 , .3 , .3 , .6 ) ;
cube( clr*127 , clr*50 , clr*150
, clr*127 , clr*255 , clr*150 ) ;
glPushMatrix() ;
glTranslatef( .3 , 0 , .4 ) ;
glRotatef( -90 , 0 , 0 , 1 ) ;
setbox( 0,0,0 , .2,.2,.2 ) ;
half( white , white ) ;
glPushMatrix() ;
glTranslatef( 0 , .2 , 0 ) ;
glRotatef( 0 , 0 , 0 , 1 ) ;
setbox( 0,0,0 , .1,.1,.1 ) ;
half( black , black ) ;
glPopMatrix() ;
glPopMatrix() ;
glPushMatrix() ;
glTranslatef( -.3 , 0 , .4 ) ;
glRotatef( 90 , 0 , 0 , 1 ) ;
setbox( 0,0,0 , .2,.2,.2 ) ;
half( white , white ) ;
glPushMatrix() ;
glTranslatef( 0 , .2 , 0 ) ;
glRotatef( 0 , 0 , 0 , 1 ) ;
setbox( 0,0,0 , .1,.1,.1 ) ;
half( black , black ) ;
glPopMatrix() ;
glPopMatrix() ;
glPopMatrix() ;
}
*/
//@moves
/*
void walk2( GLfloat fase , GLfloat amp )
{
int i ;
for ( i=0 ; i < limmax ; i++ )
{
setangle( i , 0,0,0 ) ;
}
setangle( leg
, pend( fase , amp , 0 ) , 0 , 0 ) ;
setangle( leg + right
, pend( fase+180 , amp , 0 ) , 0 , 0 ) ;
setangle( knee
, pend( fase-90 , amp , -amp ) , 0 , 0 ) ;
setangle( knee + right
, pend( fase+90 , amp , -amp ) , 0 , 0 ) ;
setangle( arm
, pend( fase , amp , 0 ) , 0 , 0 ) ;
setangle( arm + right
, pend( fase+180 , amp , 0 ) , 0 , 0 ) ;
setangle( elbow , amp*2 , 0 , 0 ) ;
setangle( elbow+right , amp*2 ,0,0 ) ;
}
void walk4( GLfloat fase , GLfloat amp )
{ int i ;
for ( i=0 ; i < limmax ; i++ )
{
setangle( i , 0,0,0 ) ;
}
setangle( leg
, pend( fase , amp , 0 ) , 0 , 0 ) ;
setangle( leg + right
, pend( fase+180 , amp , 0 ) , 0 , 0 ) ;
setangle( knee
, pend( fase-90 , amp , -amp ) , 0 , 0 ) ;
setangle( knee + right
, pend( fase+90 , amp , -amp ) , 0 , 0 ) ;
setangle( arm
, pend( fase , amp , 0 ) , 0 , 0 ) ;
setangle( arm + right
, pend( fase+180 , amp , 0 ) , 0 , 0 ) ;
setangle( elbow
, pend( fase-90 , amp , -amp ) , 0 , 0 ) ;
setangle( elbow+right
, pend( fase+90 , amp , -amp ) , 0 , 0 ) ;
setangle( neck+right
, 0 , 0 , pend( fase*2 , amp/2 , 0 ) ) ;
}
*/
/*
void walkbug(
GLfloat fase , GLfloat amp )
{
int i ;
for ( i=0 ; i < limmax ; i++ )
{
setangle( i , 0,0,0 ) ;
}
for ( i=itail+1 ; i<itail+21 ; i++ )
{
setangle( i , -12,0,0 ) ;
}
for ( i=0 ; i<3 ; i++ )
{
setangle( ileg+i
,0,0,post(pend(i*180-fase,20,0)));
setangle( iknee+i
,pend(i*180+fase+90,20,0),0,0);
setangle( ileg+i+iright
,0,0,-post(pend(i*180+fase+180,20,0)));
setangle( iknee+i+iright
,pend(i*180+fase+90,20,0),0,0);
}
setangle( iarm,0,-60,0);
setangle( ielbow,0,80,0);
setangle( iarm+iright,0,60,0);
setangle( ielbow+iright,0,-80,0);
}
*/
void skycar( int i )
{
if ( i < 4 ) i = 4 ;
glPushMatrix() ;
setbox( 0,0,0
, 1.4 , 1 , 3 ) ;
elipse( i , i ) ;
setbox( 0,.8,0 , .8,.8,1.6 ) ;
elipse( i , i ) ;
glPushMatrix() ;
glTranslatef( 0,-1,2 ) ;
glRotatef( -30 , 1,0,0 ) ;
setbox( 0,0,0 , .15,.7,.15 ) ;
cilinder( i , .2,.2 , false , false ) ;
setbox( 0,-1,0,.3,.3,.3) ;
elipse( 6 , 6 ) ;
glPopMatrix() ;
glPushMatrix() ;
glTranslatef( .5,-1,-2 ) ;
glRotatef( 30 , 0,0,1 ) ;
setbox( 0,0,0 , .15,.7,.15 ) ;
cilinder( i , .15,.15 , false , false ) ;
setbox( 0,-1,0,.3,.3,.3) ;
elipse( 6 , 6 ) ;
glPopMatrix() ;
glPushMatrix() ;
glTranslatef( -.5,-1,-2 ) ;
glRotatef( -30 , 0,0,1 ) ;
setbox( 0,0,0 , .15,.7,.15 ) ;
cilinder( i , .15,.15 , false , false ) ;
setbox( 0,-1,0,.3,.3,.3) ;
elipse( 6 , 6 ) ;
glPopMatrix() ;
glPushMatrix() ;
glTranslatef( 0,1,3 ) ;
glRotatef( 30 , 1,0,0 ) ;
setbox( 0,0,0 , .2,1,.5 ) ;
cilinder( i , .02,.05 , false , false ) ;
glPopMatrix() ;
glPushMatrix() ;
glTranslatef( 0,.5,2 ) ;
glRotatef( 90 , 0,0,1 ) ;
setbox( 0,0,0 , .2,1.5,.5 ) ;
cilinder( i,.2,.5 , false,false ) ;
glPopMatrix() ;
glPushMatrix() ;
glTranslatef( 0,-.5,-2 ) ;
glRotatef( 90 , 0,0,1 ) ;
setbox( 0,0,0 , .2,1.5,.5 ) ;
cilinder( i,.2,.5 , false,false ) ;
glPopMatrix() ;
glPushMatrix() ;
child( 2,-.5,-2, arm , XYZ ) ;
setbox( 0 , 0 , 0
, .5 , .1 , .7 ) ;
torus( i , i ) ;
glPopMatrix() ;
glPushMatrix() ;
child( -2,-.5,-2, arm+right , XYZ ) ;
setbox( 0 , 0 , 0
, .5 , .1 , .7 ) ;
torus( i , i ) ;
glPopMatrix() ;
glPushMatrix() ;
child( 2,.5,2, leg , XYZ ) ;
setbox( 0 , 0 , 0
, .5 , .1 , .7 ) ;
torus( i , i ) ;
glPopMatrix() ;
glPushMatrix() ;
child( -2,.5,2, leg+right , XYZ ) ;
setbox( 0 , 0 , 0
, .5 , .1 , .7 ) ;
torus( i , i ) ;
glPopMatrix() ;
glPopMatrix() ;
}
//@game
void initScene()
{
MessageBox( NULL
, "A openGL demo .\n\n"
"Instrucktions :\n"
"mouse :\n"
"- turn left right .\n"
"- move forward back .\n"
"keys :\n"
"- cursor : left right up down .\n"
// "- space : fire .\n"
"- esc : quit game .\n"
"TEAM 11 members on this poject :\n"
"- blua rigro .\n"
, "SHAPES .", 0 ) ;
// randomize
srand(static_cast<unsigned int>(clock()));
// put camara on start spot
human.x = 0 ;
human.y = .3 ;
human.z = 0 ;
int i ;
// put all Qbe on start spot
for ( i = 0 ; i < Qmax ; i++ )
{
Qbe[ i ].x =
rndrange( -MAZE_MAX , MAZE_MAX ) ;
Qbe[ i ].y =
rndrange( 3 , 7 ) ;
Qbe[ i ].z =
rndrange( -MAZE_MAX , MAZE_MAX ) ;
Qbe[ i ].angle =
rndrange( 0 , 360 ) ; ;
Qbe[ i ].state = 0 ;
}
for ( i = 0 ; i < TREE_MAX ; i++ )
{
tree[ i ].x =
rndrange( -MAZE_MAX*2 , MAZE_MAX*2 ) ;
tree[ i ].y = rnd()*rnd()*2+1 ;
tree[ i ].z =
rndrange( -MAZE_MAX*2 , MAZE_MAX*2 ) ;
}

}
GLfloat hill( int i , int j )
{
return
( sin( (i*5.0+j*2.0) / MAZE_MAX * M_PI )
+ sin( (i*2.0-j*5.0) / MAZE_MAX * M_PI )
+ sin( (-i*3.0+j*7.0) / MAZE_MAX*M_PI )
+ sin( (-i*7.0-j*3.0)/MAZE_MAX*M_PI)
+ cos( i*1.0 / MAZE_MAX * M_PI ) * 2
+ cos( i*1.0 / MAZE_MAX * M_PI ) * 2
) * cos(i*1.0/MAZE_MAX*M_PI)
* cos(j*1.0/MAZE_MAX*M_PI) - 8;
}
int DrawGLScene( GLvoid ) // Here's Where We Do All The Drawing
{
glClear( GL_COLOR_BUFFER_BIT
| GL_DEPTH_BUFFER_BIT ) ; // Clear Screen And Depth B

GLfloat hoek = human.angle*M_PI/180 ;

GLfloat speed = .1f ;
human.dx = 0 ;
human.dy = 0 ;
human.dz = 0 ;
if ( keys[ VK_ESCAPE ] )
{
PostQuitMessage( 0 ) ;
}
if ( keys[ VK_DOWN ] && human.y > .3 )
{
human.dy = -speed ;
}
if ( mouse_y > winy * 4 / 5 )
{
human.dz = cos( hoek ) * speed ;
human.dx = -sin( hoek ) * speed ;
}
if ( keys[ VK_UP ] && human.y < 5 )
{
human.dy = speed ;
}
if ( mouse_y < winy / 5 )
{
human.dz = -cos( hoek ) * speed ;
human.dx = sin( hoek ) * speed ;
}
if ( keys[ VK_RIGHT ] )
{
human.dz = sin( hoek ) * speed ;
human.dx = cos( hoek ) * speed ;
}
if ( mouse_x > winx * 4 / 5 )
{
human.angle += 0.5f ;
}
if ( keys[ VK_LEFT ] )
{
human.dz = -sin( hoek ) * speed ;
human.dx = -cos( hoek ) * speed ;
}
if ( mouse_x < winx / 5 )
{
human.angle -= 0.5f ;
}

setmat( BLACK , WHITE , BLACK , 1 ) ;
glLoadIdentity(); // Reset The Current Modelview Matrix
setlight( GL_LIGHT1
, RED_LIGHT_LOC , RED ) ;
setlight( GL_LIGHT2
, GREEN_LIGHT_LOC , GREEN ) ;
setlight( GL_LIGHT3
, BLUE_LIGHT_LOC , BLUE ) ;

setangle( arm , 60,0,0 ) ;
setangle( arm+right , 60,0,0 ) ;
setangle( leg , 60,0,0 ) ;
setangle( leg+right , 60,0,0 ) ;
setmat( BLACK , WHITE , BLACK , 1 ) ;
glPushMatrix() ;
setbox( 0,-2,-2 , .7,.7,3 ) ;
elipse( 32 , 32 ) ;
glPopMatrix() ;
glRotatef( human.angle , 0.0f , 1.0f , 0.0f ) ;
glTranslatef( -human.x
, -human.y-2 , -human.z ) ;

int i , j , k ;
bool wall = false ;

for ( i = -MAZE_MAX ; i < MAZE_MAX ; i++ )
{
for ( j = -MAZE_MAX ; j < MAZE_MAX ; j++ )
{
if ( j+i & 1 )
{
setmat( BLACK
, GREEN , BLACK , 0 ) ;
}
else
{
setmat( BLACK
, LGREEN , BLACK , 0 ) ;
}
point( 0 , i*4-2
, 0 , j*4-2 ) ;
point( 1 , i*4-2
, 0 , j*4+2 ) ;
point( 2 , i*4+2
, 0 , j*4+2 ) ;
point( 3 , i*4+2
, 0 , j*4-2 ) ;
quad( 0 , 1 , 2 , 3 ) ;
}
}
/*
setmat( BLACK
, GREEN , BLACK , 0 ) ;
point( 0 , MAZE_MAX*3 , 0 , MAZE_MAX*3 ) ;
point( 1 , MAZE_MAX*3 , 0 , -MAZE_MAX*3 ) ;
point( 2 , -MAZE_MAX*3 , 0 , -MAZE_MAX*3 ) ;
point( 3 , -MAZE_MAX*3 , 0 , MAZE_MAX*3 ) ;
quad( 0 , 1 , 2 , 3 ) ;
*/
// do animal behavure
/* GLfloat CLR[] =
{ sin( rquad * M_PI / 180 - M_PI*2/3 ) / 2 + .5
, sin( rquad * M_PI / 180 + M_PI*2/3 ) / 2 + .5
, sin( rquad * M_PI / 180 ) / 2 + .5 , 1 } ;
*/
for ( k = 0 ; k < Qmax ; k++ )
{
Qbe[ k ].dx =
sin( Qbe[ k ].angle
* M_PI / 180 ) ;
Qbe[ k ].dz =
cos( Qbe[ k ].angle
* M_PI / 180 ) ;
}
for ( i = 0 ; i < Qmax ; i++ )
{
/*
Qbe[ i ].tel-- ;
if ( Qbe[ i ].tel < 0 )
{
Qbe[ i ].tel =
(int)rndrange( 10 , 50 ) ;
Qbe[ i ].state =
(int)rndrange( -1 , 1 ) ;
}
if ( Qbe[ i ].state == 1 )
{
Qbe[ i ].angle += 2 ;
}
if ( Qbe[ i ].state == -1 )
{
Qbe[ i ].angle -= 2 ;
}
*/
// update coordinates
Qbe[ i ].x -= Qbe[ i ].dx*speed*.7 ;
Qbe[ i ].y -= Qbe[ i ].dy*speed*.7 ;
Qbe[ i ].z -= Qbe[ i ].dz*speed*.7 ;
// keep animal in world
if ( Qbe[ i ].x < -MAZE_MAX*2 )
{
Qbe[ i ].x = MAZE_MAX*2 ;
}
if ( Qbe[ i ].x > MAZE_MAX*2 )
{
Qbe[ i ].x = -MAZE_MAX*2 ;
}
if ( Qbe[ i ].z < -MAZE_MAX*2 )
{
Qbe[ i ].z = MAZE_MAX*2 ;
}
if ( Qbe[ i ].z > MAZE_MAX*2 )
{
Qbe[ i ].z = -MAZE_MAX*2 ;
}
GLfloat l =
lenght( human.x-Qbe.x
, human.y-Qbe.y
, human.z-Qbe.z ) ;
// draw Qbe animal
switch( i % 8 )
{
case 0 :
setmat( BLACK , RED , BLACK , 1 ) ;
break ;
case 1 :
setmat( BLACK , GREEN , BLACK , 1 ) ;
break ;
case 2 :
setmat( BLACK , YELLOW , BLACK , 1 ) ;
break ;
case 3 :
setmat( BLACK , BLUE , BLACK , 1 ) ;
break ;
case 4 :
setmat( BLACK , MAGENTA , BLACK , 1 ) ;
break ;
case 5 :
setmat( BLACK , CYAN , BLACK , 1 ) ;
break ;
case 6 :
setmat( BLACK , WHITE , BLACK , 1 ) ;
break ;
default :
setmat( BLACK , GRAY , BLACK , 1 ) ;
}
glPushMatrix() ;
glTranslatef(
Qbe[ i ].x
, Qbe[ i ].y
, Qbe[ i ].z ) ;
glRotatef( Qbe[ i ].angle ,0,1,0 ) ;
glScalef( .5 , .5 , .5 ) ;
skycar( (int)( 32 / (l/10+1) ) ) ;
glPopMatrix() ;
setmat( BLACK , BLACK , BLACK , 0 ) ;
glPushMatrix() ;
glTranslatef(
Qbe[ i ].x
, .1
, Qbe[ i ].z ) ;
glRotatef( Qbe[ i ].angle ,0,1,0 ) ;
glScalef( .5 , 0 , .5 ) ;
skycar( (int)( 32 / (l/7+1) ) ) ;
glPopMatrix() ;
}
for ( i = 0 ; i < TREE_MAX ; i++ )
{
GLfloat l =
lenght( human.x-Qbe.x
, human.y-Qbe.y
, human.z-Qbe.z ) ;
setmat( BLACK , GREEN , BLACK , 0 ) ;
glPushMatrix() ;
setbox(
tree[ i ].x
, tree[ i ].y * 1.4
, tree[ i ].z
, tree[ i ].y/2
, tree[ i ].y
, tree[ i ].y/2 ) ;
cilinder(
6,0,0,false,false ) ;
glPopMatrix() ;
setmat( BLACK , BLACK , BLACK , 0 ) ;
glPushMatrix() ;
setbox(
tree[ i ].x
, .1
, tree[ i ].z
, tree[ i ].y/2
, 0
, tree[ i ].y/2 ) ;
cilinder(
6,0,0,false,false) ;

;
glPopMatrix() ;
}
human.x += human.dx ;
human.y += human.dy ;
human.z += human.dz ;
if ( human.x < -MAZE_MAX*2 )
{
human.x = MAZE_MAX*2 ;
}
if ( human.x > MAZE_MAX*2 )
{
human.x = -MAZE_MAX*2 ;
}
if ( human.z < -MAZE_MAX*2 )
{
human.z = MAZE_MAX*2 ;
}
if ( human.z > MAZE_MAX*2 )
{
human.z = -MAZE_MAX*2 ;
}
rquad += 6 ;

return TRUE ; // Keep Going
}

//@opengl + @windows
void setlight( int no , GLfloat* loc , GLfloat* clr )
{
glLightfv( no , GL_AMBIENT , BLACK ) ;
glLightfv( no , GL_DIFFUSE , clr ) ;
glLightfv( no , GL_POSITION , loc ) ;
glLightfv( no , GL_SPECULAR , clr ) ;
glEnable( no ) ;
}
void setmat( GLfloat* ambiant
, GLfloat* difuse
, GLfloat* specular
, GLfloat shine )
{
glMaterialfv( GL_FRONT_AND_BACK , GL_AMBIENT , ambiant ) ;
glMaterialfv( GL_FRONT_AND_BACK , GL_DIFFUSE , difuse ) ;
glMaterialfv( GL_FRONT_AND_BACK , GL_SPECULAR , specular ) ;
glMaterialf( GL_FRONT_AND_BACK , GL_AMBIENT , shine ) ;
glShadeModel( GL_FLAT ) ;
}
void setfog( GLfloat min , GLfloat max
, int mode , GLfloat* clr , GLfloat dens )
{
glFogi( GL_FOG_MODE , mode ) ;
glFogf( GL_FOG_START , min ) ;
glFogf( GL_FOG_END , max ) ;
glFogfv( GL_FOG_COLOR , clr ) ;
glFogf( GL_FOG_DENSITY , dens ) ;
glEnable( GL_FOG ) ;
}
int InitGL( GLvoid ) // All Setup For OpenGL Goes Here
{
glShadeModel(GL_SMOOTH); // Enable Smooth Shading
glClearColor(0.5f, 0.5f, 1.0f, 1.0f); // Black Background
glClearDepth(1.0f); // Depth Buffer Setup
glEnable(GL_DEPTH_TEST); // Enables Depth Testing
glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations
glEnable( GL_LIGHTING ) ;

initScene() ;

return TRUE ; // Initialization Went OK
}
GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And Initialize The GL Window
{
if (height==0) // Prevent A Divide By Zero By
{
height=1; // Making Height Equal One
}

glViewport(0,0,width,height); // Reset The Current Viewport

glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
glLoadIdentity(); // Reset The Projection Matrix

// Calculate The Aspect Ratio Of The Window
gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.1f,100.0f);

glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
glLoadIdentity(); // Reset The Modelview Matrix
}
GLvoid KillGLWindow(GLvoid) // Properly Kill The Window
{
if (fullscreen) // Are We In Fullscreen Mode?
{
ChangeDisplaySettings(NULL,0); // If So Switch Back To The Desktop
ShowCursor(TRUE); // Show Mouse Pointer
}

if (hRC) // Do We Have A Rendering Context?
{
if (!wglMakeCurrent(NULL,NULL)) // Are We Able To Release The DC And RC Contexts?
{
MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
}

if (!wglDeleteContext(hRC)) // Are We Able To Delete The RC?
{
MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
}
hRC=NULL; // Set RC To NULL
}

if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC
{
MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
hDC=NULL; // Set DC To NULL
}

if (hWnd && !DestroyWindow(hWnd)) // Are We Able To Destroy The Window?
{
MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
hWnd=NULL; // Set hWnd To NULL
}

if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
{
MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
hInstance=NULL; // Set hInstance To NULL
}
}

/* This Code Creates Our OpenGL Window. Parameters Are: *
* title - Title To Appear At The Top Of The Window *
* width - Width Of The GL Window Or Fullscreen Mode *
* height - Height Of The GL Window Or Fullscreen Mode *
* bits - Number Of Bits To Use For Color (8/16/24/32) *
* fullscreenflag - Use Fullscreen Mode (TRUE) Or Windowed Mode (FALSE) */

BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag)
{
GLuint PixelFormat; // Holds The Results After Searching For A Match
WNDCLASS wc; // Windows Class Structure
DWORD dwExStyle; // Window Extended Style
DWORD dwStyle; // Window Style
RECT WindowRect; // Grabs Rectangle Upper Left / Lower Right Values
WindowRect.left=(long)0; // Set Left Value To 0
WindowRect.right=(long)width; // Set Right Value To Requested Width
WindowRect.top=(long)0; // Set Top Value To 0
WindowRect.bottom=(long)height; // Set Bottom Value To Requested Height

fullscreen=fullscreenflag; // Set The Global Fullscreen Flag

hInstance = GetModuleHandle(NULL); // Grab An Instance For Our Window
wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; // Redraw On Size, And Own DC For Window.
wc.lpfnWndProc = (WNDPROC) WndProc; // WndProc Handles Messages
wc.cbClsExtra = 0; // No Extra Window Data
wc.cbWndExtra = 0; // No Extra Window Data
wc.hInstance = hInstance; // Set The Instance
wc.hIcon = LoadIcon(NULL, IDI_WINLOGO); // Load The Default Icon
wc.hCursor = LoadCursor(NULL, IDC_ARROW); // Load The Arrow Pointer
wc.hbrBackground = NULL; // No Background Required For GL
wc.lpszMenuName = NULL; // We Don't Want A Menu
wc.lpszClassName = "OpenGL"; // Set The Class Name

if (!RegisterClass(&wc)) // Attempt To Register The Window Class
{
MessageBox(NULL,"Failed To Register The Window Class.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return FALSE; // Return FALSE
}

if (fullscreen) // Attempt Fullscreen Mode?
{
DEVMODE dmScreenSettings; // Device Mode
memset(&dmScreenSettings,0,sizeof(dmScreenSettings)); // Makes Sure Memory's Cleared
dmScreenSettings.dmSize=sizeof(dmScreenSettings); // Size Of The Devmode Structure
dmScreenSettings.dmPelsWidth = width; // Selected Screen Width
dmScreenSettings.dmPelsHeight = height; // Selected Screen Height
dmScreenSettings.dmBitsPerPel = bits; // Selected Bits Per Pixel
dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;

// Try To Set Selected Mode And Get Results. NOTE: CDS_FULLSCREEN Gets Rid Of Start Bar.
if (ChangeDisplaySettings(&dmScreenSettings,CDS_FULLSCREEN)!=DISP_CHANGE_SUCCESSFUL)
{
// If The Mode Fails, Offer Two Options. Quit Or Use Windowed Mode.
if (MessageBox(NULL,"The Requested Fullscreen Mode Is Not Supported By\nYour Video Card. Use Windowed Mode Instead?","NeHe GL",MB_YESNO|MB_ICONEXCLAMATION)==IDYES)
{
fullscreen=FALSE; // Windowed Mode Selected. Fullscreen = FALSE
}
else
{
// Pop Up A Message Box Letting User Know The Program Is Closing.
MessageBox(NULL,"Program Will Now Close.","ERROR",MB_OK|MB_ICONSTOP);
return FALSE; // Return FALSE
}
}
}

if (fullscreen) // Are We Still In Fullscreen Mode?
{
dwExStyle=WS_EX_APPWINDOW; // Window Extended Style
dwStyle=WS_POPUP; // Windows Style
ShowCursor(FALSE); // Hide Mouse Pointer
}
else
{
dwExStyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; // Window Extended Style
dwStyle=WS_OVERLAPPEDWINDOW; // Windows Style
}

AdjustWindowRectEx(&WindowRect, dwStyle, FALSE, dwExStyle); // Adjust Window To True Requested Size

// Create The Window
if (!(hWnd=CreateWindowEx( dwExStyle, // Extended Style For The Window
"OpenGL", // Class Name
title, // Window Title
dwStyle | // Defined Window Style
WS_CLIPSIBLINGS | // Required Window Style
WS_CLIPCHILDREN, // Required Window Style
0, 0, // Window Position
WindowRect.right-WindowRect.left, // Calculate Window Width
WindowRect.bottom-WindowRect.top, // Calculate Window Height
NULL, // No Parent Window
NULL, // No Menu
hInstance, // Instance
NULL))) // Dont Pass Anything To WM_CREATE
{
KillGLWindow(); // Reset The Display
MessageBox(NULL,"Window Creation Error.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return FALSE; // Return FALSE
}

static PIXELFORMATDESCRIPTOR pfd= // pfd Tells Windows How We Want Things To Be
{
sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor
1, // Version Number
PFD_DRAW_TO_WINDOW | // Format Must Support Window
PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
PFD_DOUBLEBUFFER, // Must Support Double Buffering
PFD_TYPE_RGBA, // Request An RGBA Format
bits, // Select Our Color Depth
0, 0, 0, 0, 0, 0, // Color Bits Ignored
0, // No Alpha Buffer
0, // Shift Bit Ignored
0, // No Accumulation Buffer
0, 0, 0, 0, // Accumulation Bits Ignored
16, // 16Bit Z-Buffer (Depth Buffer)
0, // No Stencil Buffer
0, // No Auxiliary Buffer
PFD_MAIN_PLANE, // Main Drawing Layer
0, // Reserved
0, 0, 0 // Layer Masks Ignored
};

if (!(hDC=GetDC(hWnd))) // Did We Get A Device Context?
{
KillGLWindow(); // Reset The Display
MessageBox(NULL,"Can't Create A GL Device Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return FALSE; // Return FALSE
}

if (!(PixelFormat=ChoosePixelFormat(hDC,&pfd))) // Did Windows Find A Matching Pixel Format?
{
KillGLWindow(); // Reset The Display
MessageBox(NULL,"Can't Find A Suitable PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return FALSE; // Return FALSE
}

if(!SetPixelFormat(hDC,PixelFormat,&pfd)) // Are We Able To Set The Pixel Format?
{
KillGLWindow(); // Reset The Display
MessageBox(NULL,"Can't Set The PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return FALSE; // Return FALSE
}

if (!(hRC=wglCreateContext(hDC))) // Are We Able To Get A Rendering Context?
{
KillGLWindow(); // Reset The Display
MessageBox(NULL,"Can't Create A GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return FALSE; // Return FALSE
}

if(!wglMakeCurrent(hDC,hRC)) // Try To Activate The Rendering Context
{
KillGLWindow(); // Reset The Display
MessageBox(NULL,"Can't Activate The GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return FALSE; // Return FALSE
}

ShowWindow(hWnd,SW_SHOW); // Show The Window
SetForegroundWindow(hWnd); // Slightly Higher Priority
SetFocus(hWnd); // Sets Keyboard Focus To The Window
ReSizeGLScene(width, height); // Set Up Our Perspective GL Screen

if (!InitGL()) // Initialize Our Newly Created GL Window
{
KillGLWindow(); // Reset The Display
MessageBox(NULL,"Initialization Failed.","ERROR",MB_OK|MB_ICONEXCLAMATION);
return FALSE; // Return FALSE
}

return TRUE; // Success
}

LRESULT CALLBACK WndProc( HWND hWnd, // Handle For This Window
UINT uMsg, // Message For This Window
WPARAM wParam, // Additional Message Information
LPARAM lParam) // Additional Message Information
{
switch (uMsg) // Check For Windows Messages
{
case WM_CREATE :
SetTimer( hWnd
, FRAME_TIMER
, 20 , NULL ) ;
break ;
case WM_TIMER :
switch( wParam )
{
case FRAME_TIMER :
{
// Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
if ( ( active
&& !DrawGLScene() )
|| keys[ VK_ESCAPE ] ) // Active? Was There A Quit Received?
{
PostQuitMessage( 0 ) ; // ESC or DrawGLScene Signalled A Quit
}
else // Not Time To Quit, Update Screen
{
HDC hdc ;
PAINTSTRUCT paint ;
hdc = BeginPaint( hWnd , &paint ) ;
SwapBuffers( hdc ) ; // Swap Buffers (Double Buffering)
}
}
}
return 0 ;
case WM_ACTIVATE : // Watch For Window Activate Message
{
if ( !HIWORD( wParam ) ) // Check Minimization State
{
active = TRUE ; // Program Is Active
}
else
{
active = FALSE ; // Program Is No Longer Active
}
return 0 ; // Return To The Message Loop
}
case WM_SYSCOMMAND : // Intercept System Commands
{
switch ( wParam ) // Check System Calls
{
case SC_SCREENSAVE : // Screensaver Trying To Start?
case SC_MONITORPOWER : // Monitor Trying To Enter Powersave?
return 0 ; // Prevent From Happening
}
break ; // Exit
}
case WM_CLOSE : // Did We Receive A Close Message?
{
PostQuitMessage( 0 ) ; // Send A Quit Message
return 0 ; // Jump Back
}
case WM_KEYDOWN : // Is A Key Being Held Down?
{
key_shift = GetKeyState( VK_SHIFT ) ;
keys[ wParam ] = TRUE ; // If So, Mark It As TRUE
return 0 ; // Jump Back
}
case WM_KEYUP : // Has A Key Been Released?
{
keys[ wParam ] = FALSE ; // If So, Mark It As FALSE
return 0 ; // Jump Back
}
case WM_LBUTTONDOWN :
left_button = true ;
break ;
case WM_MBUTTONDOWN :
;
break ;
case WM_RBUTTONDOWN :
right_button = true ;
break ;
case WM_MOUSEMOVE :
mouse_x = LOWORD( lParam ) ;
mouse_y = HIWORD( lParam ) ;
break ;
case WM_SIZE: // Resize The OpenGL Window
{
ReSizeGLScene(
LOWORD( lParam )
, HIWORD( lParam ) ) ; // LoWord=Width, HiWord=Height
winx = LOWORD( lParam ) ;
winy = HIWORD( lParam ) ;
return 0; // Jump Back
}
// case WM_PAINT :
// PAINTSTRUCT paint ;
// hdc = BeginPaint( hWnd , &paint ) ;
// break ;
}
// Pass All Unhandled Messages To DefWindowProc
return DefWindowProc(hWnd,uMsg,wParam,lParam);

}

int WINAPI WinMain( HINSTANCE hInstance, // Instance
HINSTANCE hPrevInstance, // Previous Instance
LPSTR lpCmdLine, // Command Line Parameters
int nCmdShow) // Window Show State
{
MSG msg; // Windows Message Structure
BOOL done=FALSE; // Bool Variable To Exit Loop

// {
// fullscreen=FALSE; // Windowed Mode
// }

// Create Our OpenGL Window
if (!CreateGLWindow("NeHe's Solid Object Tutorial",640,480,16,fullscreen))
{
return 0; // Quit If Window Was Not Created
}

while(!done) // Loop That Runs While done=FALSE
{
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
{
if (msg.message==WM_QUIT) // Have We Received A Quit Message?
{
done=TRUE; // If So done=TRUE
}
else // If Not, Deal With Window Messages
{
TranslateMessage(&msg); // Translate The Message
DispatchMessage(&msg); // Dispatch The Message
}
}
else // If There Are No Messages
{
//draw scene
if (keys[VK_F1]) // Is F1 Being Pressed?
{
keys[VK_F1]=FALSE; // If So Make Key FALSE
KillGLWindow(); // Kill Our Current Window
fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
// Recreate Our OpenGL Window
if (!CreateGLWindow("NeHe's Solid Object Tutorial",640,480,16,fullscreen))
{
return 0; // Quit If Window Was Not Created
}
}
}
}

// Shutdown
KillGLWindow(); // Kill The Window
return (msg.wParam); // Exit The Program
}

void text( int x , int y
, char* txt
, char* fontname
, int fontsize , int clr )
{
LOGFONT logfont = { } ;
// init all members to 0
strcpy( logfont.lfFaceName
, fontname ) ; // max 31+1 chars
logfont.lfHeight = fontsize ;
HFONT font =
CreateFontIndirect( &logfont ) ;
HFONT oldfont =
(HFONT)SelectObject( hdc , font ) ;
SetBkMode( hdc , TRANSPARENT ) ;
SetTextColor( hdc , clr ) ;
TextOut( hdc , x , y , txt
, strlen( txt ) ) ;
SelectObject( hdc , oldfont ) ;
DeleteObject( font ) ;
}

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement
  • Advertisement
  • Popular Tags

  • Advertisement
  • Popular Now

  • Similar Content

    • By sergio2k18
      Hi all
      this is my first post on this forum.
      First of all i want to say you that i've searched many posts on this forum about this specific argument, without success, so i write another one....
      Im a beginner.
      I want use GPU geometry clipmaps algorithm to visualize virtual inifinte terrains. 
      I already tried to use vertex texture fetch with a single sampler2D with success.
       
      Readed many papers about the argument and all speak about the fact that EVERY level of a geometry clipmap, has its own texture. What means this exactly? i have to 
      upload on graphic card a sampler2DArray?
      With a single sampler2D is conceptually simple. Creating a vbo and ibo on cpu (the vbo contains only the positions on X-Z plane, not the heights)
      and upload on GPU the texture containing the elevations. In vertex shader i sample, for every vertex, the relative height to te uv coordinate.
      But i can't imagine how can i reproduce various 2d footprint for every level of the clipmap. The only way i can imagine is follow:
      Upload the finer texture on GPU (entire heightmap). Create on CPU, and for each level of clipmap, the 2D footprints of entire clipmap.
      So in CPU i create all clipmap levels in terms of X-Z plane. In vertex shader sampling these values is simple using vertex texture fetch.
      So, how can i to sample a sampler2DArray in vertex shader, instead of upload a sampler2D of entire clipmap?
       
       
      Sorry for my VERY bad english, i hope i have been clear.
       
    • By too_many_stars
      Hello Everyone,
      I have been going over a number of books and examples that deal with GLSL. It's common after viewing the source code to have something like this...
      class Model{ public: Model(); void render(); private: GLSL glsl_program; }; ////// .cpp Model::Model(){ glsl_program.compileAndLinkShaders() } void Model::render(){ glsl_program.use() //render something glsl_program.unUse(); } Is this how a shader program should be used in real time applications? For example, if I have a particle class, for every particle that's created, do I want to compiling and linking a vertex, frag shader? It seems to a noob such as myself this might not be the best approach to real time applications.
      If I am correct, what is the best work around?
      Thanks so much for all the help,
       
      Mike
       
    • By getoutofmycar
      I'm having some difficulty understanding how data would flow or get inserted into a multi-threaded opengl renderer where there is a thread pool and a render thread and an update thread (possibly main). My understanding is that the threadpool will continually execute jobs, assemble these and when done send them off to be rendered where I can further sort these and achieve some cheap form of statelessness. I don't want anything overly complicated or too fine grained,  fibers,  job stealing etc. My end goal is to simply have my renderer isolated in its own thread and only concerned with drawing and swapping buffers. 
      My questions are:
      1. At what point in this pipeline are resources created?
      Say I have a
      class CCommandList { void SetVertexBuffer(...); void SetIndexBuffer(...); void SetVertexShader(...); void SetPixelShader(...); } borrowed from an existing post here. I would need to generate a VAO at some point and call glGenBuffers etc especially if I start with an empty scene. If my context lives on another thread, how do I call these commands if the command list is only supposed to be a collection of state and what command to use. I don't think that the render thread should do this and somehow add a task to the queue or am I wrong?
      Or could I do some variation where I do the loading in a thread with shared context and from there generate a command that has the handle to the resources needed.
       
      2. How do I know all my jobs are done.
      I'm working with C++, is this as simple as knowing how many objects there are in the scene, for every task that gets added increment a counter and when it matches aforementioned count I signal the renderer that the command list is ready? I was thinking a condition_variable or something would suffice to alert the renderthread that work is ready.
       
      3. Does all work come from a singular queue that the thread pool constantly cycles over?
      With the notion of jobs, we are basically sending the same work repeatedly right? Do all jobs need to be added to a single persistent queue to be submitted over and over again?
       
      4. Are resources destroyed with commands?
      Likewise with initializing and assuming #3 is correct, removing an item from the scene would mean removing it from the job queue, no? Would I need to send a onetime command to the renderer to cleanup?
    • By Finalspace
      I am starting to get into linux X11/GLX programming, but from every C example i found - there is this XVisualInfo thing parameter passed to XCreateWindow always.
      Can i control this parameter later on - when the window is already created? What i want it to change my own non GLX window to be a GLX window - without recreating. Is that possible?
       
      On win32 this works just fine to create a rendering context later on, i simply find and setup the pixel format from a pixel format descriptor and create the context and are ready to go.
       
      I am asking, because if that doesent work - i need to change a few things to support both worlds (Create a context from a existing window, create a context for a new window).
    • By DiligentDev
      This article uses material originally posted on Diligent Graphics web site.
      Introduction
      Graphics APIs have come a long way from small set of basic commands allowing limited control of configurable stages of early 3D accelerators to very low-level programming interfaces exposing almost every aspect of the underlying graphics hardware. Next-generation APIs, Direct3D12 by Microsoft and Vulkan by Khronos are relatively new and have only started getting widespread adoption and support from hardware vendors, while Direct3D11 and OpenGL are still considered industry standard. New APIs can provide substantial performance and functional improvements, but may not be supported by older hardware. An application targeting wide range of platforms needs to support Direct3D11 and OpenGL. New APIs will not give any advantage when used with old paradigms. It is totally possible to add Direct3D12 support to an existing renderer by implementing Direct3D11 interface through Direct3D12, but this will give zero benefits. Instead, new approaches and rendering architectures that leverage flexibility provided by the next-generation APIs are expected to be developed.
      There are at least four APIs (Direct3D11, Direct3D12, OpenGL/GLES, Vulkan, plus Apple's Metal for iOS and osX platforms) that a cross-platform 3D application may need to support. Writing separate code paths for all APIs is clearly not an option for any real-world application and the need for a cross-platform graphics abstraction layer is evident. The following is the list of requirements that I believe such layer needs to satisfy:
      Lightweight abstractions: the API should be as close to the underlying native APIs as possible to allow an application leverage all available low-level functionality. In many cases this requirement is difficult to achieve because specific features exposed by different APIs may vary considerably. Low performance overhead: the abstraction layer needs to be efficient from performance point of view. If it introduces considerable amount of overhead, there is no point in using it. Convenience: the API needs to be convenient to use. It needs to assist developers in achieving their goals not limiting their control of the graphics hardware. Multithreading: ability to efficiently parallelize work is in the core of Direct3D12 and Vulkan and one of the main selling points of the new APIs. Support for multithreading in a cross-platform layer is a must. Extensibility: no matter how well the API is designed, it still introduces some level of abstraction. In some cases the most efficient way to implement certain functionality is to directly use native API. The abstraction layer needs to provide seamless interoperability with the underlying native APIs to provide a way for the app to add features that may be missing. Diligent Engine is designed to solve these problems. Its main goal is to take advantages of the next-generation APIs such as Direct3D12 and Vulkan, but at the same time provide support for older platforms via Direct3D11, OpenGL and OpenGLES. Diligent Engine exposes common C++ front-end for all supported platforms and provides interoperability with underlying native APIs. It also supports integration with Unity and is designed to be used as graphics subsystem in a standalone game engine, Unity native plugin or any other 3D application. Full source code is available for download at GitHub and is free to use.
      Overview
      Diligent Engine API takes some features from Direct3D11 and Direct3D12 as well as introduces new concepts to hide certain platform-specific details and make the system easy to use. It contains the following main components:
      Render device (IRenderDevice  interface) is responsible for creating all other objects (textures, buffers, shaders, pipeline states, etc.).
      Device context (IDeviceContext interface) is the main interface for recording rendering commands. Similar to Direct3D11, there are immediate context and deferred contexts (which in Direct3D11 implementation map directly to the corresponding context types). Immediate context combines command queue and command list recording functionality. It records commands and submits the command list for execution when it contains sufficient number of commands. Deferred contexts are designed to only record command lists that can be submitted for execution through the immediate context.
      An alternative way to design the API would be to expose command queue and command lists directly. This approach however does not map well to Direct3D11 and OpenGL. Besides, some functionality (such as dynamic descriptor allocation) can be much more efficiently implemented when it is known that a command list is recorded by a certain deferred context from some thread.
      The approach taken in the engine does not limit scalability as the application is expected to create one deferred context per thread, and internally every deferred context records a command list in lock-free fashion. At the same time this approach maps well to older APIs.
      In current implementation, only one immediate context that uses default graphics command queue is created. To support multiple GPUs or multiple command queue types (compute, copy, etc.), it is natural to have one immediate contexts per queue. Cross-context synchronization utilities will be necessary.
      Swap Chain (ISwapChain interface). Swap chain interface represents a chain of back buffers and is responsible for showing the final rendered image on the screen.
      Render device, device contexts and swap chain are created during the engine initialization.
      Resources (ITexture and IBuffer interfaces). There are two types of resources - textures and buffers. There are many different texture types (2D textures, 3D textures, texture array, cubmepas, etc.) that can all be represented by ITexture interface.
      Resources Views (ITextureView and IBufferView interfaces). While textures and buffers are mere data containers, texture views and buffer views describe how the data should be interpreted. For instance, a 2D texture can be used as a render target for rendering commands or as a shader resource.
      Pipeline State (IPipelineState interface). GPU pipeline contains many configurable stages (depth-stencil, rasterizer and blend states, different shader stage, etc.). Direct3D11 uses coarse-grain objects to set all stage parameters at once (for instance, a rasterizer object encompasses all rasterizer attributes), while OpenGL contains myriad functions to fine-grain control every individual attribute of every stage. Both methods do not map very well to modern graphics hardware that combines all states into one monolithic state under the hood. Direct3D12 directly exposes pipeline state object in the API, and Diligent Engine uses the same approach.
      Shader Resource Binding (IShaderResourceBinding interface). Shaders are programs that run on the GPU. Shaders may access various resources (textures and buffers), and setting correspondence between shader variables and actual resources is called resource binding. Resource binding implementation varies considerably between different API. Diligent Engine introduces a new object called shader resource binding that encompasses all resources needed by all shaders in a certain pipeline state.
      API Basics
      Creating Resources
      Device resources are created by the render device. The two main resource types are buffers, which represent linear memory, and textures, which use memory layouts optimized for fast filtering. Graphics APIs usually have a native object that represents linear buffer. Diligent Engine uses IBuffer interface as an abstraction for a native buffer. To create a buffer, one needs to populate BufferDesc structure and call IRenderDevice::CreateBuffer() method as in the following example:
      BufferDesc BuffDesc; BufferDesc.Name = "Uniform buffer"; BuffDesc.BindFlags = BIND_UNIFORM_BUFFER; BuffDesc.Usage = USAGE_DYNAMIC; BuffDesc.uiSizeInBytes = sizeof(ShaderConstants); BuffDesc.CPUAccessFlags = CPU_ACCESS_WRITE; m_pDevice->CreateBuffer( BuffDesc, BufferData(), &m_pConstantBuffer ); While there is usually just one buffer object, different APIs use very different approaches to represent textures. For instance, in Direct3D11, there are ID3D11Texture1D, ID3D11Texture2D, and ID3D11Texture3D objects. In OpenGL, there is individual object for every texture dimension (1D, 2D, 3D, Cube), which may be a texture array, which may also be multisampled (i.e. GL_TEXTURE_2D_MULTISAMPLE_ARRAY). As a result there are nine different GL texture types that Diligent Engine may create under the hood. In Direct3D12, there is only one resource interface. Diligent Engine hides all these details in ITexture interface. There is only one  IRenderDevice::CreateTexture() method that is capable of creating all texture types. Dimension, format, array size and all other parameters are specified by the members of the TextureDesc structure:
      TextureDesc TexDesc; TexDesc.Name = "My texture 2D"; TexDesc.Type = TEXTURE_TYPE_2D; TexDesc.Width = 1024; TexDesc.Height = 1024; TexDesc.Format = TEX_FORMAT_RGBA8_UNORM; TexDesc.Usage = USAGE_DEFAULT; TexDesc.BindFlags = BIND_SHADER_RESOURCE | BIND_RENDER_TARGET | BIND_UNORDERED_ACCESS; TexDesc.Name = "Sample 2D Texture"; m_pRenderDevice->CreateTexture( TexDesc, TextureData(), &m_pTestTex ); If native API supports multithreaded resource creation, textures and buffers can be created by multiple threads simultaneously.
      Interoperability with native API provides access to the native buffer/texture objects and also allows creating Diligent Engine objects from native handles. It allows applications seamlessly integrate native API-specific code with Diligent Engine.
      Next-generation APIs allow fine level-control over how resources are allocated. Diligent Engine does not currently expose this functionality, but it can be added by implementing IResourceAllocator interface that encapsulates specifics of resource allocation and providing this interface to CreateBuffer() or CreateTexture() methods. If null is provided, default allocator should be used.
      Initializing the Pipeline State
      As it was mentioned earlier, Diligent Engine follows next-gen APIs to configure the graphics/compute pipeline. One big Pipelines State Object (PSO) encompasses all required states (all shader stages, input layout description, depth stencil, rasterizer and blend state descriptions etc.). This approach maps directly to Direct3D12/Vulkan, but is also beneficial for older APIs as it eliminates pipeline misconfiguration errors. With many individual calls tweaking various GPU pipeline settings it is very easy to forget to set one of the states or assume the stage is already properly configured when in fact it is not. Using pipeline state object helps avoid these problems as all stages are configured at once.
      Creating Shaders
      While in earlier APIs shaders were bound separately, in the next-generation APIs as well as in Diligent Engine shaders are part of the pipeline state object. The biggest challenge when authoring shaders is that Direct3D and OpenGL/Vulkan use different shader languages (while Apple uses yet another language in their Metal API). Maintaining two versions of every shader is not an option for real applications and Diligent Engine implements shader source code converter that allows shaders authored in HLSL to be translated to GLSL. To create a shader, one needs to populate ShaderCreationAttribs structure. SourceLanguage member of this structure tells the system which language the shader is authored in:
      SHADER_SOURCE_LANGUAGE_DEFAULT - The shader source language matches the underlying graphics API: HLSL for Direct3D11/Direct3D12 mode, and GLSL for OpenGL and OpenGLES modes. SHADER_SOURCE_LANGUAGE_HLSL - The shader source is in HLSL. For OpenGL and OpenGLES modes, the source code will be converted to GLSL. SHADER_SOURCE_LANGUAGE_GLSL - The shader source is in GLSL. There is currently no GLSL to HLSL converter, so this value should only be used for OpenGL and OpenGLES modes. There are two ways to provide the shader source code. The first way is to use Source member. The second way is to provide a file path in FilePath member. Since the engine is entirely decoupled from the platform and the host file system is platform-dependent, the structure exposes pShaderSourceStreamFactory member that is intended to provide the engine access to the file system. If FilePath is provided, shader source factory must also be provided. If the shader source contains any #include directives, the source stream factory will also be used to load these files. The engine provides default implementation for every supported platform that should be sufficient in most cases. Custom implementation can be provided when needed.
      When sampling a texture in a shader, the texture sampler was traditionally specified as separate object that was bound to the pipeline at run time or set as part of the texture object itself. However, in most cases it is known beforehand what kind of sampler will be used in the shader. Next-generation APIs expose new type of sampler called static sampler that can be initialized directly in the pipeline state. Diligent Engine exposes this functionality: when creating a shader, textures can be assigned static samplers. If static sampler is assigned, it will always be used instead of the one initialized in the texture shader resource view. To initialize static samplers, prepare an array of StaticSamplerDesc structures and initialize StaticSamplers and NumStaticSamplers members. Static samplers are more efficient and it is highly recommended to use them whenever possible. On older APIs, static samplers are emulated via generic sampler objects.
      The following is an example of shader initialization:
      ShaderCreationAttribs Attrs; Attrs.Desc.Name = "MyPixelShader"; Attrs.FilePath = "MyShaderFile.fx"; Attrs.SearchDirectories = "shaders;shaders\\inc;"; Attrs.EntryPoint = "MyPixelShader"; Attrs.Desc.ShaderType = SHADER_TYPE_PIXEL; Attrs.SourceLanguage = SHADER_SOURCE_LANGUAGE_HLSL; BasicShaderSourceStreamFactory BasicSSSFactory(Attrs.SearchDirectories); Attrs.pShaderSourceStreamFactory = &BasicSSSFactory; ShaderVariableDesc ShaderVars[] = {     {"g_StaticTexture", SHADER_VARIABLE_TYPE_STATIC},     {"g_MutableTexture", SHADER_VARIABLE_TYPE_MUTABLE},     {"g_DynamicTexture", SHADER_VARIABLE_TYPE_DYNAMIC} }; Attrs.Desc.VariableDesc = ShaderVars; Attrs.Desc.NumVariables = _countof(ShaderVars); Attrs.Desc.DefaultVariableType = SHADER_VARIABLE_TYPE_STATIC; StaticSamplerDesc StaticSampler; StaticSampler.Desc.MinFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MagFilter = FILTER_TYPE_LINEAR; StaticSampler.Desc.MipFilter = FILTER_TYPE_LINEAR; StaticSampler.TextureName = "g_MutableTexture"; Attrs.Desc.NumStaticSamplers = 1; Attrs.Desc.StaticSamplers = &StaticSampler; ShaderMacroHelper Macros; Macros.AddShaderMacro("USE_SHADOWS", 1); Macros.AddShaderMacro("NUM_SHADOW_SAMPLES", 4); Macros.Finalize(); Attrs.Macros = Macros; RefCntAutoPtr<IShader> pShader; m_pDevice->CreateShader( Attrs, &pShader );
      Creating the Pipeline State Object
      After all required shaders are created, the rest of the fields of the PipelineStateDesc structure provide depth-stencil, rasterizer, and blend state descriptions, the number and format of render targets, input layout format, etc. For instance, rasterizer state can be described as follows:
      PipelineStateDesc PSODesc; RasterizerStateDesc &RasterizerDesc = PSODesc.GraphicsPipeline.RasterizerDesc; RasterizerDesc.FillMode = FILL_MODE_SOLID; RasterizerDesc.CullMode = CULL_MODE_NONE; RasterizerDesc.FrontCounterClockwise = True; RasterizerDesc.ScissorEnable = True; RasterizerDesc.AntialiasedLineEnable = False; Depth-stencil and blend states are defined in a similar fashion.
      Another important thing that pipeline state object encompasses is the input layout description that defines how inputs to the vertex shader, which is the very first shader stage, should be read from the memory. Input layout may define several vertex streams that contain values of different formats and sizes:
      // Define input layout InputLayoutDesc &Layout = PSODesc.GraphicsPipeline.InputLayout; LayoutElement TextLayoutElems[] = {     LayoutElement( 0, 0, 3, VT_FLOAT32, False ),     LayoutElement( 1, 0, 4, VT_UINT8, True ),     LayoutElement( 2, 0, 2, VT_FLOAT32, False ), }; Layout.LayoutElements = TextLayoutElems; Layout.NumElements = _countof( TextLayoutElems ); Finally, pipeline state defines primitive topology type. When all required members are initialized, a pipeline state object can be created by IRenderDevice::CreatePipelineState() method:
      // Define shader and primitive topology PSODesc.GraphicsPipeline.PrimitiveTopologyType = PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE; PSODesc.GraphicsPipeline.pVS = pVertexShader; PSODesc.GraphicsPipeline.pPS = pPixelShader; PSODesc.Name = "My pipeline state"; m_pDev->CreatePipelineState(PSODesc, &m_pPSO); When PSO object is bound to the pipeline, the engine invokes all API-specific commands to set all states specified by the object. In case of Direct3D12 this maps directly to setting the D3D12 PSO object. In case of Direct3D11, this involves setting individual state objects (such as rasterizer and blend states), shaders, input layout etc. In case of OpenGL, this requires a number of fine-grain state tweaking calls. Diligent Engine keeps track of currently bound states and only calls functions to update these states that have actually changed.
      Binding Shader Resources
      Direct3D11 and OpenGL utilize fine-grain resource binding models, where an application binds individual buffers and textures to certain shader or program resource binding slots. Direct3D12 uses a very different approach, where resource descriptors are grouped into tables, and an application can bind all resources in the table at once by setting the table in the command list. Resource binding model in Diligent Engine is designed to leverage this new method. It introduces a new object called shader resource binding that encapsulates all resource bindings required for all shaders in a certain pipeline state. It also introduces the classification of shader variables based on the frequency of expected change that helps the engine group them into tables under the hood:
      Static variables (SHADER_VARIABLE_TYPE_STATIC) are variables that are expected to be set only once. They may not be changed once a resource is bound to the variable. Such variables are intended to hold global constants such as camera attributes or global light attributes constant buffers. Mutable variables (SHADER_VARIABLE_TYPE_MUTABLE) define resources that are expected to change on a per-material frequency. Examples may include diffuse textures, normal maps etc. Dynamic variables (SHADER_VARIABLE_TYPE_DYNAMIC) are expected to change frequently and randomly. Shader variable type must be specified during shader creation by populating an array of ShaderVariableDesc structures and initializing ShaderCreationAttribs::Desc::VariableDesc and ShaderCreationAttribs::Desc::NumVariables members (see example of shader creation above).
      Static variables cannot be changed once a resource is bound to the variable. They are bound directly to the shader object. For instance, a shadow map texture is not expected to change after it is created, so it can be bound directly to the shader:
      PixelShader->GetShaderVariable( "g_tex2DShadowMap" )->Set( pShadowMapSRV ); Mutable and dynamic variables are bound via a new Shader Resource Binding object (SRB) that is created by the pipeline state (IPipelineState::CreateShaderResourceBinding()):
      m_pPSO->CreateShaderResourceBinding(&m_pSRB); Note that an SRB is only compatible with the pipeline state it was created from. SRB object inherits all static bindings from shaders in the pipeline, but is not allowed to change them.
      Mutable resources can only be set once for every instance of a shader resource binding. Such resources are intended to define specific material properties. For instance, a diffuse texture for a specific material is not expected to change once the material is defined and can be set right after the SRB object has been created:
      m_pSRB->GetVariable(SHADER_TYPE_PIXEL, "tex2DDiffuse")->Set(pDiffuseTexSRV); In some cases it is necessary to bind a new resource to a variable every time a draw command is invoked. Such variables should be labeled as dynamic, which will allow setting them multiple times through the same SRB object:
      m_pSRB->GetVariable(SHADER_TYPE_VERTEX, "cbRandomAttribs")->Set(pRandomAttrsCB); Under the hood, the engine pre-allocates descriptor tables for static and mutable resources when an SRB objcet is created. Space for dynamic resources is dynamically allocated at run time. Static and mutable resources are thus more efficient and should be used whenever possible.
      As you can see, Diligent Engine does not expose low-level details of how resources are bound to shader variables. One reason for this is that these details are very different for various APIs. The other reason is that using low-level binding methods is extremely error-prone: it is very easy to forget to bind some resource, or bind incorrect resource such as bind a buffer to the variable that is in fact a texture, especially during shader development when everything changes fast. Diligent Engine instead relies on shader reflection system to automatically query the list of all shader variables. Grouping variables based on three types mentioned above allows the engine to create optimized layout and take heavy lifting of matching resources to API-specific resource location, register or descriptor in the table.
      This post gives more details about the resource binding model in Diligent Engine.
      Setting the Pipeline State and Committing Shader Resources
      Before any draw or compute command can be invoked, the pipeline state needs to be bound to the context:
      m_pContext->SetPipelineState(m_pPSO); Under the hood, the engine sets the internal PSO object in the command list or calls all the required native API functions to properly configure all pipeline stages.
      The next step is to bind all required shader resources to the GPU pipeline, which is accomplished by IDeviceContext::CommitShaderResources() method:
      m_pContext->CommitShaderResources(m_pSRB, COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES); The method takes a pointer to the shader resource binding object and makes all resources the object holds available for the shaders. In the case of D3D12, this only requires setting appropriate descriptor tables in the command list. For older APIs, this typically requires setting all resources individually.
      Next-generation APIs require the application to track the state of every resource and explicitly inform the system about all state transitions. For instance, if a texture was used as render target before, while the next draw command is going to use it as shader resource, a transition barrier needs to be executed. Diligent Engine does the heavy lifting of state tracking.  When CommitShaderResources() method is called with COMMIT_SHADER_RESOURCES_FLAG_TRANSITION_RESOURCES flag, the engine commits and transitions resources to correct states at the same time. Note that transitioning resources does introduce some overhead. The engine tracks state of every resource and it will not issue the barrier if the state is already correct. But checking resource state is an overhead that can sometimes be avoided. The engine provides IDeviceContext::TransitionShaderResources() method that only transitions resources:
      m_pContext->TransitionShaderResources(m_pPSO, m_pSRB); In some scenarios it is more efficient to transition resources once and then only commit them.
      Invoking Draw Command
      The final step is to set states that are not part of the PSO, such as render targets, vertex and index buffers. Diligent Engine uses Direct3D11-syle API that is translated to other native API calls under the hood:
      ITextureView *pRTVs[] = {m_pRTV}; m_pContext->SetRenderTargets(_countof( pRTVs ), pRTVs, m_pDSV); // Clear render target and depth buffer const float zero[4] = {0, 0, 0, 0}; m_pContext->ClearRenderTarget(nullptr, zero); m_pContext->ClearDepthStencil(nullptr, CLEAR_DEPTH_FLAG, 1.f); // Set vertex and index buffers IBuffer *buffer[] = {m_pVertexBuffer}; Uint32 offsets[] = {0}; Uint32 strides[] = {sizeof(MyVertex)}; m_pContext->SetVertexBuffers(0, 1, buffer, strides, offsets, SET_VERTEX_BUFFERS_FLAG_RESET); m_pContext->SetIndexBuffer(m_pIndexBuffer, 0); Different native APIs use various set of function to execute draw commands depending on command details (if the command is indexed, instanced or both, what offsets in the source buffers are used etc.). For instance, there are 5 draw commands in Direct3D11 and more than 9 commands in OpenGL with something like glDrawElementsInstancedBaseVertexBaseInstance not uncommon. Diligent Engine hides all details with single IDeviceContext::Draw() method that takes takes DrawAttribs structure as an argument. The structure members define all attributes required to perform the command (primitive topology, number of vertices or indices, if draw call is indexed or not, if draw call is instanced or not, if draw call is indirect or not, etc.). For example:
      DrawAttribs attrs; attrs.IsIndexed = true; attrs.IndexType = VT_UINT16; attrs.NumIndices = 36; attrs.Topology = PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; pContext->Draw(attrs); For compute commands, there is IDeviceContext::DispatchCompute() method that takes DispatchComputeAttribs structure that defines compute grid dimension.
      Source Code
      Full engine source code is available on GitHub and is free to use. The repository contains tutorials, sample applications, asteroids performance benchmark and an example Unity project that uses Diligent Engine in native plugin.
      Atmospheric scattering sample demonstrates how Diligent Engine can be used to implement various rendering tasks: loading textures from files, using complex shaders, rendering to multiple render targets, using compute shaders and unordered access views, etc.

      Asteroids performance benchmark is based on this demo developed by Intel. It renders 50,000 unique textured asteroids and allows comparing performance of Direct3D11 and Direct3D12 implementations. Every asteroid is a combination of one of 1000 unique meshes and one of 10 unique textures.

      Finally, there is an example project that shows how Diligent Engine can be integrated with Unity.

      Future Work
      The engine is under active development. It currently supports Windows desktop, Universal Windows, Linux, Android, MacOS, and iOS platforms. Direct3D11, Direct3D12, OpenGL/GLES backends are now feature complete. Vulkan backend is coming next, and Metal backend is in the plan.
  • Advertisement