• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
StasB

OpenGL
Wrapping OpenGL Calls

12 posts in this topic

I'm tired of my code being littered with verbose GL calls. I've been wondering if there's any way to wrap things up in small classes without a serious loss of performance and generality. For example, if I want to have a VBO class, every member function that does something with a VBO needs to make sure it is bound first. If I want to render it, I need to make sure all the client states (e.g. glEnableClientState(GL_VERTEX_ARRAY)) and pointers (e.g. glVertexPointer(...)) are set up correctly. The only robust way to do that is to set all relevant global state in every member function call, even when it's unnecessary. Wouldn't all this state-changing cause some serious performance issues?
0

Share this post


Link to post
Share on other sites
Yes it's possible, it's called object orientation. You create classes with specific responsibilities. This will add a very tiny mini overhead but it's more than worth it. The trick is to pull your classes to an as high as possible level of abstraction without creating overly complex class responsibilities. For example, who sais you're using VBOs, maybe you've just got some vertex data that needs to be rendered however the implementation sees fit.

To counter the state changes you might end up with a state manager which only changes state if it is required.
0

Share this post


Link to post
Share on other sites
[quote name='Murdocki' timestamp='1331302390' post='4920669']
Yes it's possible, it's called object orientation. You create classes with specific responsibilities. This will add a very tiny mini overhead but it's more than worth it. The trick is to pull your classes to an as high as possible level of abstraction without creating overly complex class responsibilities. For example, who sais you're using VBOs, maybe you've just got some vertex data that needs to be rendered however the implementation sees fit.

To counter the state changes you might end up with a state manager which only changes state if it is required.
[/quote]

I thought it was clear from my OP that object orientation is what I'm trying to achieve. I'm just worried about the performance penalties from redundant state changes.
I just want a thin and convenient layer on top of plain OpenGL to ease up the task of writing a higher-level graphics engine. I thought about making a state manager, but I'm not sure how to go about it. How would you go about wrapping "void glBindBuffer( GLenum target, GLuint buffer)", for example?
0

Share this post


Link to post
Share on other sites
well, while wrapping the whole api is possible, in my opinion its rather pointless. You might want to write a state manager as suggested, but I think that you shouldn't wrap everything, but rather certain functionality (mesh loading, texture loading, shader loading etc.) which enables you to use OGL without making a single error, because the wrapper class takes care of it.

for ex. you could say that the current buffer stored would be:
struct buffer_state
{
GLuint buffer;
GLenum target;
} current_buffer_state;

and you could implement a function that checks if the current buffer bound is the one you pass to it, and in that case it wouldn't call the OGL function:
void my_bind_buffer(GLenum target, GLuint buffer)
{
if(current_buffer_state.buffer != buffer || current_buffer_state.target != target) //check the current state
{
if(glIsBuffer(buffer)) //check if it is really a buffer
{
glBindBuffer(target, buffer);
}
}
}

or something like this...
you might want to check out pixellight for a whole api wrap example.

when your app starts up you could just simply query the current gl state with glGet* to initialize your states
0

Share this post


Link to post
Share on other sites
[quote name='Yours3!f' timestamp='1331305753' post='4920683']
well, while wrapping the whole api is possible, in my opinion its rather pointless. You might want to write a state manager as suggested, but I think that you shouldn't wrap everything, but rather certain functionality (mesh loading, texture loading, shader loading etc.) which enables you to use OGL without making a single error, because the wrapper class takes care of it.

for ex. you could say that the current buffer stored would be:
struct buffer_state
{
GLuint buffer;
GLenum target;
} current_buffer_state;

and you could implement a function that checks if the current buffer bound is the one you pass to it, and in that case it wouldn't call the OGL function:
void my_bind_buffer(GLenum target, GLuint buffer)
{
if(current_buffer_state.buffer != buffer || current_buffer_state.target != target) //check the current state
{
if(glIsBuffer(buffer)) //check if it is really a buffer
{
glBindBuffer(target, buffer);
}
}
}

or something like this...
you might want to check out pixellight for a whole api wrap example.

when your app starts up you could just simply query the current gl state with glGet* to initialize your states
[/quote]

Basically, here's my problem:
I need to write my own versions of the OGL state-setter functions I care for that check for redundant state changes. Some of those functions take a parameter that specifies which state to change, like glBindBuffer. Ideally, if I write a glBindBuffer wrapper, it better act like the original, accept a target parameter and handle it correctly. How do I do that without manually writing special code for every type of target?
0

Share this post


Link to post
Share on other sites
If you're going for a higher level graphics engine you should not think about how to wrap OpenGL. Instead you should think about how you'd like to make the calls to render something and then fill that in by using OpenGL. You might need a few iterations of adjusting requirements due to api specific limitations but you'll end up with a system that's easy to use, which is one of the most important things for anything high level.

To answer your question, my glBindBuffer calls are checked in the implementation of the Renderer class just by comparing ints like suggested by the poster above. I'm not doing this in the state manager because i've defined that to be managing render states like cullmode, blend mode, alpha testing etc etc. I gues you could do that in the state manager aswell, it doesnt really matter.

On a side note, maybe managing glBindBuffer calls isn't your biggest problem if you're worried about redundant state changes performance loss. Other state changes like shader and texture binds will probably be a lot more expensive and your buffer count will be very low when you've implemented batching.
0

Share this post


Link to post
Share on other sites
oh woot simultaneous post. I dont think you want to go about wrapping single methods. At least take it higher and use a VBO. Then when making a render call to it, check if it's allready bound and rebind if needed.
0

Share this post


Link to post
Share on other sites
[quote name='Murdocki' timestamp='1331309022' post='4920696']
If you're going for a higher level graphics engine you should not think about how to wrap OpenGL. Instead you should think about how you'd like to make the calls to render something and then fill that in by using OpenGL. You might need a few iterations of adjusting requirements due to api specific limitations but you'll end up with a system that's easy to use, which is one of the most important things for anything high level.

To answer your question, my glBindBuffer calls are checked in the implementation of the Renderer class just by comparing ints like suggested by the poster above. I'm not doing this in the state manager because i've defined that to be managing render states like cullmode, blend mode, alpha testing etc etc. I gues you could do that in the state manager aswell, it doesnt really matter.

On a side note, maybe managing glBindBuffer calls isn't your biggest problem if you're worried about redundant state changes performance loss. Other state changes like shader and texture binds will probably be a lot more expensive and your buffer count will be very low when you've implemented batching.
[/quote]

What's wrong with an intermediate layer to ease up the task of writing a higher-level engine? I have no intentions of writing a big general-purpose graphics engine. If I wanted one, there are many available. I write small apps with widely varying requirements that don't usually fit a standard engine architecture and I find myself writing over and over again heaps of OGL code to handle low-level tasks like setting up and rendering FBOs, VBOs etc.
0

Share this post


Link to post
Share on other sites
only you can know how much abstraction you need or want. just make sure there is some. Wrapping glEnable(Gluint) into myEnable(unsigned int) or into myEnableDepthTest() / myDisableDepthTest() doesn't strike me as an effective way to make the program any more manageable.
1

Share this post


Link to post
Share on other sites
The way I did this was to create a set of classes to totally hide the gl calls and provide additional boiler plate functionality. Basically I've got the following classes:


[indent=1]ArrayBufferGL[/indent]
[indent=1]IndexBufferGL[/indent]
[indent=1]VertexBufferGL[/indent]
[indent=1]GeometryShaderGL[/indent]
[indent=1]VertexShaderGL[/indent]
[indent=1]PixelShaderGL[/indent]
[indent=1]ShaderProgramGL[/indent]
[indent=1]ShaderVariablesGL[/indent]
[indent=1]StateGL[/indent]
[indent=1]FrameBufferGL[/indent]
[indent=1]RenderBufferGL[/indent]
[indent=1]SamplerGL[/indent]
[indent=1]TextureMapGL[/indent]
[indent=1]TextureArrayGL[/indent]

After writing these classes, I then implemented a factory template to create instances of them:

[code]template< class GraphicsDevice,
class VertexBuffer,
class IndexBuffer,
class ArrayBuffer,
class TextureMap,
class TextureArray,
class FrameBuffer,
class RenderBuffer,
class PixelShader,
class VertexShader,
class GeometryShader,
class ShaderProgram,
class ShaderVariables,
class Sampler,
class GraphicsState>
class GraphicsFacade
{
...
};[/code]

The facade just contains a set of Createxxxxx methods that return shared_ptr to one of the items. I can instantiate the template with D3D versions if I want to at compile time. As kunos says, simply wrapping things like glEnable(x) with your own method is a bit pointless. But hiding the gl- nature of the functionality in an OO way can be really useful.
0

Share this post


Link to post
Share on other sites
[quote name='Murdocki' timestamp='1331309022' post='4920696']
If you're going for a higher level graphics engine you should not think about how to wrap OpenGL. Instead you should think about how you'd like to make the calls to render something and then fill that in by using OpenGL. You might need a few iterations of adjusting requirements due to api specific limitations but you'll end up with a system that's easy to use, which is one of the most important things for anything high level.
[/quote]

thats exactly what I said. In my implementation I dont have glBindBuffer and stuff like that used directly, I rather have mesh.load(), mesh.render() etc. so that when I try to write a small application I dont need to remember how to use OGL stuff, I just have to supply the function with some general stuff like filename, identifier that will hold the access to the loaded asset. later I can use the identifier to render it or use it.
Of course when I need it I can create a texture manually, so instead having an identifier I just have the texture directly, fill it with stuff and use it again with texture.bind() etc. so after loading again I can forget about using OGL.
When I have to do some more special stuff like deferred rendering I just use the wrapped fbo class that I wrote, and again I dont have to know OGL, but feed the fbo. This kind of stuff is similar to what RobinsonUK described.
0

Share this post


Link to post
Share on other sites
I personally have chosen a two-layered abstraction. The lower level simply wraps the OpenGL objects, VBOs, IBOs, textures and so on to the language's way of handling objects. The higher level uses those and is supposed to have things like a mesh class. Currently I handle the binding so that all the methods that require the GL object to be bound, check if it is so in the start of the method. The "trick" is that this check is only done in debug mode, the release builds don't contain any checks. It also means that to use the objects, I need to explicitly bind them whenever I'm doing anything to them - I'm not interested in abstracting all of the OpenGL away so this has been okay for me so far. First call bind and then call the actual method to do stuff with the object.

However, I've grown bit tired of the idea of doing such low level managing, what with having to have bind calls everywhere where the low level objects are used, so I'm planning to start using a state manager. The plan also includes dividing the bind operations into two categories: bind for editing and bind for drawing. The bind for editing is done implicitly in the wrapper objects' methods, for example when passing vertex data to vertex buffer. The binding for drawing is still done with an explicit bind call. The reason for the explicit binds is mostly that the alternative would be to pass all the relevant objects to some rendering method which would then bind them - but that would mean lots of stuff to pass, at least all the buffers, textures, shader... doesn't feel right, as the method would keep bloating when new stuff gets added. Anyway the state manager would have to keep track of what is bound for drawing and what is actually bound at the moment, be it for either drawing or editing, but that doesn't seem bad.

Another complication comes up at least with vertex array objects. If I first bind a VAO and then an index buffer, the index buffer will be attached to the VAO. The way I'm going to get around that is to add an AddIndexBuffer method to the VAO class which uses the implicit bind for editing method, and whenever I explicitly bind an index buffer for drawing the VAO will be automatically unbound. Same goes for vertex buffers even though they don't have the same problem. I feel it makes sense to unbind any VAOs when vertex and index buffers are bound, because those don't really mix well anyway, with VAOs essentially being a shortcut to VBO and IBO binding.
0

Share this post


Link to post
Share on other sites
[quote] The bind for editing is done implicitly in the wrapper objects' methods, for example when passing vertex data to vertex buffer. The binding for drawing is still done with an explicit bind call.[/quote]

In fact this is exactly what I did. I also made some little classes to unbind objects using RAII principles. I think the compiler should optimise away most of it leaving me with similar performance to explicit calls to bind and unbind the object, i.e. :

[CODE]
class Using
{
public:
Using(std::shared_ptr<ArrayBufferGL> buffer) : MyUsing(buffer)
{
MyUsing->Use();
}
~Using()
{
MyUsing->Unuse();
}
private:
std::shared_ptr<ArrayBufferGL> MyUsing;
};
[/CODE]

, where I can Use/Unuse the object with a stack frame:

[CODE]
{
ArrayBufferType::Using useArrayBuffer(mesh->ArrayBuffer());
...
}
[/CODE]

By doing this I never "forget" to unbind an object after use.
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By DaniDesu
      #include "MyEngine.h" int main() { MyEngine myEngine; myEngine.run(); return 0; } MyEngine.h
      #pragma once #include "MyWindow.h" #include "MyShaders.h" #include "MyShapes.h" class MyEngine { private: GLFWwindow * myWindowHandle; MyWindow * myWindow; public: MyEngine(); ~MyEngine(); void run(); }; MyEngine.cpp
      #include "MyEngine.h" MyEngine::MyEngine() { MyWindow myWindow(800, 600, "My Game Engine"); this->myWindow = &myWindow; myWindow.createWindow(); this->myWindowHandle = myWindow.getWindowHandle(); // Load all OpenGL function pointers for use gladLoadGLLoader((GLADloadproc)glfwGetProcAddress); } MyEngine::~MyEngine() { this->myWindow->destroyWindow(); } void MyEngine::run() { MyShaders myShaders("VertexShader.glsl", "FragmentShader.glsl"); MyShapes myShapes; GLuint vertexArrayObjectHandle; float coordinates[] = { 0.5f, 0.5f, 0.0f, 0.5f, -0.5f, 0.0f, -0.5f, 0.5f, 0.0f }; vertexArrayObjectHandle = myShapes.drawTriangle(coordinates); while (!glfwWindowShouldClose(this->myWindowHandle)) { glClearColor(0.5f, 0.5f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Draw something glUseProgram(myShaders.getShaderProgram()); glBindVertexArray(vertexArrayObjectHandle); glDrawArrays(GL_TRIANGLES, 0, 3); glfwSwapBuffers(this->myWindowHandle); glfwPollEvents(); } } MyShaders.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> #include "MyFileHandler.h" class MyShaders { private: const char * vertexShaderFileName; const char * fragmentShaderFileName; const char * vertexShaderCode; const char * fragmentShaderCode; GLuint vertexShaderHandle; GLuint fragmentShaderHandle; GLuint shaderProgram; void compileShaders(); public: MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName); ~MyShaders(); GLuint getShaderProgram(); const char * getVertexShaderCode(); const char * getFragmentShaderCode(); }; MyShaders.cpp
      #include "MyShaders.h" MyShaders::MyShaders(const char * vertexShaderFileName, const char * fragmentShaderFileName) { this->vertexShaderFileName = vertexShaderFileName; this->fragmentShaderFileName = fragmentShaderFileName; // Load shaders from files MyFileHandler myVertexShaderFileHandler(this->vertexShaderFileName); this->vertexShaderCode = myVertexShaderFileHandler.readFile(); MyFileHandler myFragmentShaderFileHandler(this->fragmentShaderFileName); this->fragmentShaderCode = myFragmentShaderFileHandler.readFile(); // Compile shaders this->compileShaders(); } MyShaders::~MyShaders() { } void MyShaders::compileShaders() { this->vertexShaderHandle = glCreateShader(GL_VERTEX_SHADER); this->fragmentShaderHandle = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(this->vertexShaderHandle, 1, &(this->vertexShaderCode), NULL); glShaderSource(this->fragmentShaderHandle, 1, &(this->fragmentShaderCode), NULL); glCompileShader(this->vertexShaderHandle); glCompileShader(this->fragmentShaderHandle); this->shaderProgram = glCreateProgram(); glAttachShader(this->shaderProgram, this->vertexShaderHandle); glAttachShader(this->shaderProgram, this->fragmentShaderHandle); glLinkProgram(this->shaderProgram); return; } GLuint MyShaders::getShaderProgram() { return this->shaderProgram; } const char * MyShaders::getVertexShaderCode() { return this->vertexShaderCode; } const char * MyShaders::getFragmentShaderCode() { return this->fragmentShaderCode; } MyWindow.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyWindow { private: GLFWwindow * windowHandle; int windowWidth; int windowHeight; const char * windowTitle; public: MyWindow(int windowWidth, int windowHeight, const char * windowTitle); ~MyWindow(); GLFWwindow * getWindowHandle(); void createWindow(); void MyWindow::destroyWindow(); }; MyWindow.cpp
      #include "MyWindow.h" MyWindow::MyWindow(int windowWidth, int windowHeight, const char * windowTitle) { this->windowHandle = NULL; this->windowWidth = windowWidth; this->windowWidth = windowWidth; this->windowHeight = windowHeight; this->windowTitle = windowTitle; glfwInit(); } MyWindow::~MyWindow() { } GLFWwindow * MyWindow::getWindowHandle() { return this->windowHandle; } void MyWindow::createWindow() { // Use OpenGL 3.3 and GLSL 3.3 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // Limit backwards compatibility glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // Prevent resizing window glfwWindowHint(GLFW_RESIZABLE, GL_FALSE); // Create window this->windowHandle = glfwCreateWindow(this->windowWidth, this->windowHeight, this->windowTitle, NULL, NULL); glfwMakeContextCurrent(this->windowHandle); } void MyWindow::destroyWindow() { glfwTerminate(); } MyShapes.h
      #pragma once #include <glad\glad.h> #include <GLFW\glfw3.h> class MyShapes { public: MyShapes(); ~MyShapes(); GLuint & drawTriangle(float coordinates[]); }; MyShapes.cpp
      #include "MyShapes.h" MyShapes::MyShapes() { } MyShapes::~MyShapes() { } GLuint & MyShapes::drawTriangle(float coordinates[]) { GLuint vertexBufferObject{}; GLuint vertexArrayObject{}; // Create a VAO glGenVertexArrays(1, &vertexArrayObject); glBindVertexArray(vertexArrayObject); // Send vertices to the GPU glGenBuffers(1, &vertexBufferObject); glBindBuffer(GL_ARRAY_BUFFER, vertexBufferObject); glBufferData(GL_ARRAY_BUFFER, sizeof(coordinates), coordinates, GL_STATIC_DRAW); // Dertermine the interpretation of the array buffer glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), (void *)0); glEnableVertexAttribArray(0); // Unbind the buffers glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); return vertexArrayObject; } MyFileHandler.h
      #pragma once #include <cstdio> #include <cstdlib> class MyFileHandler { private: const char * fileName; unsigned long fileSize; void setFileSize(); public: MyFileHandler(const char * fileName); ~MyFileHandler(); unsigned long getFileSize(); const char * readFile(); }; MyFileHandler.cpp
      #include "MyFileHandler.h" MyFileHandler::MyFileHandler(const char * fileName) { this->fileName = fileName; this->setFileSize(); } MyFileHandler::~MyFileHandler() { } void MyFileHandler::setFileSize() { FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fseek(fileHandle, 0L, SEEK_END); this->fileSize = ftell(fileHandle); rewind(fileHandle); fclose(fileHandle); return; } unsigned long MyFileHandler::getFileSize() { return (this->fileSize); } const char * MyFileHandler::readFile() { char * buffer = (char *)malloc((this->fileSize)+1); FILE * fileHandle = NULL; fopen_s(&fileHandle, this->fileName, "rb"); fread(buffer, this->fileSize, sizeof(char), fileHandle); fclose(fileHandle); buffer[this->fileSize] = '\0'; return buffer; } VertexShader.glsl
      #version 330 core layout (location = 0) vec3 VertexPositions; void main() { gl_Position = vec4(VertexPositions, 1.0f); } FragmentShader.glsl
      #version 330 core out vec4 FragmentColor; void main() { FragmentColor = vec4(1.0f, 0.0f, 0.0f, 1.0f); } I am attempting to create a simple engine/graphics utility using some object-oriented paradigms. My first goal is to get some output from my engine, namely, a simple red triangle.
      For this goal, the MyShapes class will be responsible for defining shapes such as triangles, polygons etc. Currently, there is only a drawTriangle() method implemented, because I first wanted to see whether it works or not before attempting to code other shape drawing methods.
      The constructor of the MyEngine class creates a GLFW window (GLAD is also initialized here to load all OpenGL functionality), and the myEngine.run() method in Main.cpp is responsible for firing up the engine. In this run() method, the shaders get loaded from files via the help of my FileHandler class. The vertices for the triangle are processed by the myShapes.drawTriangle() method where a vertex array object, a vertex buffer object and vertrex attributes are set for this purpose.
      The while loop in the run() method should be outputting me the desired red triangle, but all I get is a grey window area. Why?
      Note: The shaders are compiling and linking without any errors.
      (Note: I am aware that this code is not using any good software engineering practices (e.g. exceptions, error handling). I am planning to implement them later, once I get the hang of OpenGL.)

       
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
       
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
       
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
    • By yahiko00
      Hi,
      Not sure to post at the right place, if not, please forgive me...
      For a game project I am working on, I would like to implement a 2D starfield as a background.
      I do not want to deal with static tiles, since I plan to slowly animate the starfield. So, I am trying to figure out how to generate a random starfield for the entire map.
      I feel that using a uniform distribution for the stars will not do the trick. Instead I would like something similar to the screenshot below, taken from the game Star Wars: Empire At War (all credits to Lucasfilm, Disney, and so on...).

      Is there someone who could have an idea of a distribution which could result in such a starfield?
      Any insight would be appreciated
    • By afraidofdark
      I have just noticed that, in quake 3 and half - life, dynamic models are effected from light map. For example in dark areas, gun that player holds seems darker. How did they achieve this effect ? I can use image based lighting techniques however (Like placing an environment probe and using it for reflections and ambient lighting), this tech wasn't used in games back then, so there must be a simpler method to do this.
      Here is a link that shows how modern engines does it. Indirect Lighting Cache It would be nice if you know a paper that explains this technique. Can I apply this to quake 3' s light map generator and bsp format ?
  • Popular Now