• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By racarate
      Hey everybody!
      I am trying to replicate all these cool on-screen debug visuals I see in all the SIGGRAPH and GDC talks, but I really don't know where to start.  The only resource I know of is almost 16 years old:
      http://number-none.com/product/Interactive Profiling, Part 1/index.html
      Does anybody have a more up-to-date reference?  Do people use minimal UI libraries like Dear ImgGui?  Also, If I am profiling OpenGL ES 3.0 (which doesn't have timer queries) is there really anything I can do to measure performance GPU-wise?  Or should I just chart CPU-side frame time?  I feel like this is something people re-invent for every game there has gotta be a tutorial out there... right?
       
       
    • By Achivai
      Hey, I am semi-new to 3d-programming and I've hit a snag. I have one object, let's call it Object A. This object has a long int array of 3d xyz-positions stored in it's vbo as an instanced attribute. I am using these numbers to instance object A a couple of thousand times. So far so good. 
      Now I've hit a point where I want to remove one of these instances of object A while the game is running, but I'm not quite sure how to go about it. At first my thought was to update the instanced attribute of Object A and change the positions to some dummy number that I could catch in the vertex shader and then decide there whether to draw the instance of Object A or not, but I think that would be expensive to do while the game is running, considering that it might have to be done several times every frame in some cases. 
      I'm not sure how to proceed, anyone have any tips?
    • By fleissi
      Hey guys!

      I'm new here and I recently started developing my own rendering engine. It's open source, based on OpenGL/DirectX and C++.
      The full source code is hosted on github:
      https://github.com/fleissna/flyEngine

      I would appreciate if people with experience in game development / engine desgin could take a look at my source code. I'm looking for honest, constructive criticism on how to improve the engine.
      I'm currently writing my master's thesis in computer science and in the recent year I've gone through all the basics about graphics programming, learned DirectX and OpenGL, read some articles on Nvidia GPU Gems, read books and integrated some of this stuff step by step into the engine.

      I know about the basics, but I feel like there is some missing link that I didn't get yet to merge all those little pieces together.

      Features I have so far:
      - Dynamic shader generation based on material properties
      - Dynamic sorting of meshes to be renderd based on shader and material
      - Rendering large amounts of static meshes
      - Hierarchical culling (detail + view frustum)
      - Limited support for dynamic (i.e. moving) meshes
      - Normal, Parallax and Relief Mapping implementations
      - Wind animations based on vertex displacement
      - A very basic integration of the Bullet physics engine
      - Procedural Grass generation
      - Some post processing effects (Depth of Field, Light Volumes, Screen Space Reflections, God Rays)
      - Caching mechanisms for textures, shaders, materials and meshes

      Features I would like to have:
      - Global illumination methods
      - Scalable physics
      - Occlusion culling
      - A nice procedural terrain generator
      - Scripting
      - Level Editing
      - Sound system
      - Optimization techniques

      Books I have so far:
      - Real-Time Rendering Third Edition
      - 3D Game Programming with DirectX 11
      - Vulkan Cookbook (not started yet)

      I hope you guys can take a look at my source code and if you're really motivated, feel free to contribute :-)
      There are some videos on youtube that demonstrate some of the features:
      Procedural grass on the GPU
      Procedural Terrain Engine
      Quadtree detail and view frustum culling

      The long term goal is to turn this into a commercial game engine. I'm aware that this is a very ambitious goal, but I'm sure it's possible if you work hard for it.

      Bye,

      Phil
    • By tj8146
      I have attached my project in a .zip file if you wish to run it for yourself.
      I am making a simple 2d top-down game and I am trying to run my code to see if my window creation is working and to see if my timer is also working with it. Every time I run it though I get errors. And when I fix those errors, more come, then the same errors keep appearing. I end up just going round in circles.  Is there anyone who could help with this? 
       
      Errors when I build my code:
      1>Renderer.cpp 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2039: 'string': is not a member of 'std' 1>c:\program files (x86)\windows kits\10\include\10.0.16299.0\ucrt\stddef.h(18): note: see declaration of 'std' 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2061: syntax error: identifier 'string' 1>c:\users\documents\opengl\game\game\renderer.cpp(28): error C2511: 'bool Game::Rendering::initialize(int,int,bool,std::string)': overloaded member function not found in 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.h(9): note: see declaration of 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.cpp(35): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(36): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(43): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>Done building project "Game.vcxproj" -- FAILED. ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========  
       
      Renderer.cpp
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Renderer.h" #include "Timer.h" #include <iostream> namespace Game { GLFWwindow* window; /* Initialize the library */ Rendering::Rendering() { mClock = new Clock; } Rendering::~Rendering() { shutdown(); } bool Rendering::initialize(uint width, uint height, bool fullscreen, std::string window_title) { if (!glfwInit()) { return -1; } /* Create a windowed mode window and its OpenGL context */ window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL); if (!window) { glfwTerminate(); return -1; } /* Make the window's context current */ glfwMakeContextCurrent(window); glViewport(0, 0, (GLsizei)width, (GLsizei)height); glOrtho(0, (GLsizei)width, (GLsizei)height, 0, 1, -1); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glfwSwapInterval(1); glEnable(GL_SMOOTH); glEnable(GL_DEPTH_TEST); glEnable(GL_BLEND); glDepthFunc(GL_LEQUAL); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glEnable(GL_TEXTURE_2D); glLoadIdentity(); return true; } bool Rendering::render() { /* Loop until the user closes the window */ if (!glfwWindowShouldClose(window)) return false; /* Render here */ mClock->reset(); glfwPollEvents(); if (mClock->step()) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glfwSwapBuffers(window); mClock->update(); } return true; } void Rendering::shutdown() { glfwDestroyWindow(window); glfwTerminate(); } GLFWwindow* Rendering::getCurrentWindow() { return window; } } Renderer.h
      #pragma once namespace Game { class Clock; class Rendering { public: Rendering(); ~Rendering(); bool initialize(uint width, uint height, bool fullscreen, std::string window_title = "Rendering window"); void shutdown(); bool render(); GLFWwindow* getCurrentWindow(); private: GLFWwindow * window; Clock* mClock; }; } Timer.cpp
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include <time.h> #include "Timer.h" namespace Game { Clock::Clock() : mTicksPerSecond(50), mSkipTics(1000 / mTicksPerSecond), mMaxFrameSkip(10), mLoops(0) { mLastTick = tick(); } Clock::~Clock() { } bool Clock::step() { if (tick() > mLastTick && mLoops < mMaxFrameSkip) return true; return false; } void Clock::reset() { mLoops = 0; } void Clock::update() { mLastTick += mSkipTics; mLoops++; } clock_t Clock::tick() { return clock(); } } TImer.h
      #pragma once #include "Common.h" namespace Game { class Clock { public: Clock(); ~Clock(); void update(); bool step(); void reset(); clock_t tick(); private: uint mTicksPerSecond; ufloat mSkipTics; uint mMaxFrameSkip; uint mLoops; uint mLastTick; }; } Common.h
      #pragma once #include <cstdio> #include <cstdlib> #include <ctime> #include <cstring> #include <cmath> #include <iostream> namespace Game { typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long ulong; typedef float ufloat; }  
      Game.zip
    • By lxjk
      Hi guys,
      There are many ways to do light culling in tile-based shading. I've been playing with this idea for a while, and just want to throw it out there.
      Because tile frustums are general small compared to light radius, I tried using cone test to reduce false positives introduced by commonly used sphere-frustum test.
      On top of that, I use distance to camera rather than depth for near/far test (aka. sliced by spheres).
      This method can be naturally extended to clustered light culling as well.
      The following image shows the general ideas

       
      Performance-wise I get around 15% improvement over sphere-frustum test. You can also see how a single light performs as the following: from left to right (1) standard rendering of a point light; then tiles passed the test of (2) sphere-frustum test; (3) cone test; (4) spherical-sliced cone test
       

       
      I put the details in my blog post (https://lxjk.github.io/2018/03/25/Improve-Tile-based-Light-Culling-with-Spherical-sliced-Cone.html), GLSL source code included!
       
      Eric
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL DX10 - Accessing members of a constant buffer

This topic is 2231 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

Hi,

I'm working on a multi-API rendering framework. I started off with OpenGL, then added DirectX9 and am now in the process of converting that to DirectX 10. I will add DirectX 11 when that is done.

Today, I've come across the constant buffer concept. In DirectX 9, when I wanted to pass uniform constants to my shader I would call ->SetFloatArray() or similar on the constant table.

In the SDK samples (HLSLWithoutFX10), the equivalent method requires a constant buffer declaration as below:

struct VS_CONSTANT_BUFFER
{
D3DXMATRIX mWorldViewProj; //mWorldViewProj will probably be global to all shaders in a project.
//It's a good idea not to move it around between shaders.
D3DXVECTOR4 vSomeVectorThatMayBeNeededByASpecificShader;
float fSomeFloatThatMayBeNeededByASpecificShader;
float fTime; //fTime may also be global to all shaders in a project.
float fSomeFloatThatMayBeNeededByASpecificShader2;
float fSomeFloatThatMayBeNeededByASpecificShader3;
};


This can be accessed by calling ->map and then setting the values.

What do I do if I don't know what the format of the constant buffer is going to be? I don't particularly want to hard-code in a declaration into the source, as all my shaders have different constants and I don't know what I'm going to be adding in the future.

I'm not using the effects capabilities, but am compiling using D3DX10CompileFromMemory (I realise this is deprecated so intend to change this later).

Is there no way to access the constant buffer properties by name without using the effects functions? I currently store all my shaders in separate .vp (vertex) and .fp (fragment) files. I was hoping that I wouldn't need to change anything in these between DX9 and 10.

I'm in the really early stages of all this and am nowhere near thinking about optimizing by reducing the number of draw calls, constant changes etc. It really is just a simple framework at the moment, not an engine as such.

Having read all that, you'll probably tell me not to bother with DX10 anymore but for the sake of argument, I'm really just using it as a learning exercise.

Many thanks in advance all you genius gurus smile.png

Share this post


Link to post
Share on other sites
Advertisement
Well,the easy answer is no. If you try to create some frame work to allow you to do what you want to do, you will basically be making your own effect style interface, so you are better off using the existing effect framework.

If you want to avoid hard coding many different constant buffers, than create a standard for your shaders, ie:

for all your vertex shaders:

struct CBperObject
{
D3DXMatrix WorldMat;
}

struct CBperFrame
{
D3DXMatrix ViewMat;
D3DXMatrix ProjMat;
}


So now, you know that every vertex shader is going to need these.

Share this post


Link to post
Share on other sites
You can use the reflection API's to get all of the information you need about a constant buffer declared in a shader. Take a look at ID3D10ShaderReflection for the relevent documentaiton. Just be aware that if you want the best performance than you're going to have to move away from the idea of just arbitrarily setting the values of individual constants. The real power of constant buffers is that you can group them by how often then need to be updated, and to take advantage of this you'll need to partition constants into different constant buffers and be careful about how you set the values in them. However the reflection API's can still help you if you want to avoid just hard-coding structures to match constant buffer layouts.

Share this post


Link to post
Share on other sites
Thanks guys. I'm not ready to optimize yet, I really just want to get it working.

I think I've figured out a way of doing it - just declare a pointer to a char[] of arbitrary size (say 1024), then pass the values in and increase the pointer by the relevant size (ie Matrix4x4 or Vector4). I *should* have the same memory layout as though I declared a hard-coded unique struct. The only caveat is I have to pass the arguments into the shader in the same order as they are declared in the shader itself.

This might not work, I haven't got as far as testing it yet - I'm not so good at this memory manipulation stuff coming from C#.

If it doesn't work, I'll have a look at the Reflection APIs. That looks like what I'm after.

Thanks all :)

Share this post


Link to post
Share on other sites
I've ended up using Reflection. I still haven't got it working (I'm just trying to draw a triangle), but I'm confident my problem now lies elsewhere. I found the documentation lacking but I had a brainwave - I had a look through the OGRE source and they do pretty much the same thing so I pilfered a bit from there.

It's a bit messy at the moment, but I'll tidy it up when I come to making a generic solution for it all.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement