Sign in to follow this  

DX11 Render targets w/ different dimensions than Back Buffer DX11

Recommended Posts

Icetigris    122
Hi, I'm trying to do some image processing type stuff (Gaussian blur) on some 1024x1024 textures, but my back buffer is 800x600. I'm not sure what the rules are on how to do this, so at the moment I either get distorted textures or render targets that clear, but don't get drawn to. Can someone give me a step-by-step process of how to do this? I've read that all active render targets have to be the same type and dimensions, but I feel like I'm missing something.

Share this post

Link to post
Share on other sites
InvalidPointer    1842
If you're using MRT then all render targets *bound to the context* need to be the same dimensions, but that isn't a global 'if you EVER don't send the same dimensions to CreateRenderTargetView() then D3D gonna asplode.' Based on what you're trying to do, you should easily be able to create a simple 1024x1024 target and bind/work with that directly.

If that's what you *are* doing, then it sounds like some code is in order.

Share this post

Link to post
Share on other sites
pcmaster    982
To me it sounds like he's using a swap chain and rendering things to screen, hence the mentioned back buffer. Forget about screen and rendering to it, Icetigris, you're going to render to "virtual" "frame buffers" (render targets), which have nothing to do with your window (it doesn't even have to exist).
Just create a texture (ID3D11Device::CreateTexture2D), create a RTV for this texture (ID3D11Device::CreateRenderTargetView), set the RTV (ID3D11DeviceContext::OMSetRenderTargets), apply your shader, set some SRVs (shader resources, source textures...) and issue a draw call (typically a 4 vertex quad). Your card will render into your custom texture (instead of screen).

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Similar Content

    • By gsc
      Hi! I am trying to implement simple SSAO postprocess. The main source of my knowledge on this topic is that awesome tutorial.
      But unfortunately something doesn't work... And after a few long hours I need some help. Here is my hlsl shader:
      float3 randVec = _noise * 2.0f - 1.0f; // noise: vec: {[0;1], [0;1], 0} float3 tangent = normalize(randVec - normalVS * dot(randVec, normalVS)); float3 bitangent = cross(tangent, normalVS); float3x3 TBN = float3x3(tangent, bitangent, normalVS); float occlusion = 0.0; for (int i = 0; i < kernelSize; ++i) { float3 samplePos = samples[i].xyz; // samples: {[-1;1], [-1;1], [0;1]} samplePos = mul(samplePos, TBN); samplePos = + samplePos * ssaoRadius; float4 offset = float4(samplePos, 1.0f); offset = mul(offset, projectionMatrix); offset.xy /= offset.w; offset.y = -offset.y; offset.xy = offset.xy * 0.5f + 0.5f; float sampleDepth = tex_4.Sample(textureSampler, offset.xy).a; sampleDepth = vsPosFromDepth(sampleDepth, offset.xy).z; const float threshold = 0.025f; float rangeCheck = abs(positionVS.z - sampleDepth) < ssaoRadius ? 1.0 : 0.0; occlusion += (sampleDepth <= samplePos.z + threshold ? 1.0 : 0.0) * rangeCheck; } occlusion = saturate(1 - (occlusion / kernelSize)); And current result:
      I will really appreciate for any advice!
    • By isu diss
       I'm trying to code Rayleigh part of Nishita's model (Display Method of the Sky Color Taking into Account Multiple Scattering). I get black screen no colors. Can anyone find the issue for me?
      #define InnerRadius 6320000 #define OutterRadius 6420000 #define PI 3.141592653 #define Isteps 20 #define Ksteps 10 static float3 RayleighCoeffs = float3(6.55e-6, 1.73e-5, 2.30e-5); RWTexture2D<float4> SkyColors : register (u0); cbuffer CSCONSTANTBUF : register( b0 ) { float fHeight; float3 vSunDir; } float Density(float Height) { return exp(-Height/8340); } float RaySphereIntersection(float3 RayOrigin, float3 RayDirection, float3 SphereOrigin, float Radius) { float t1, t0; float3 L = SphereOrigin - RayOrigin; float tCA = dot(L, RayDirection); if (tCA < 0) return -1; float lenL = length(L); float D2 = (lenL*lenL) - (tCA*tCA); float Radius2 = (Radius*Radius); if (D2<=Radius2) { float tHC = sqrt(Radius2 - D2); t0 = tCA-tHC; t1 = tCA+tHC; } else return -1; return t1; } float RayleighPhaseFunction(float cosTheta) { return ((3/(16*PI))*(1+cosTheta*cosTheta)); } float OpticalDepth(float3 StartPosition, float3 EndPosition) { float3 Direction = normalize(EndPosition - StartPosition); float RayLength = RaySphereIntersection(StartPosition, Direction, float3(0, 0, 0), OutterRadius); float SampleLength = RayLength / Isteps; float3 tmpPos = StartPosition + 0.5 * SampleLength * Direction; float tmp; for (int i=0; i<Isteps; i++) { tmp += Density(length(tmpPos)-InnerRadius); tmpPos += SampleLength * Direction; } return tmp*SampleLength; } static float fExposure = -2; float3 HDR( float3 LDR) { return 1.0f - exp( fExposure * LDR ); } [numthreads(32, 32, 1)] //disptach 8, 8, 1 it's 256 by 256 image void ComputeSky(uint3 DTID : SV_DispatchThreadID) { float X = ((2 * DTID.x) / 255) - 1; float Y = 1 - ((2 * DTID.y) / 255); float r = sqrt(((X*X)+(Y*Y))); float Theta = r * (PI); float Phi = atan2(Y, X); static float3 Eye = float3(0, 10, 0); float ViewOD = 0, SunOD = 0, tmpDensity = 0; float3 Attenuation = 0, tmp = 0, Irgb = 0; //if (r<=1) { float3 ViewDir = normalize(float3(sin(Theta)*cos(Phi), cos(Theta),sin(Theta)*sin(Phi) )); float ViewRayLength = RaySphereIntersection(Eye, ViewDir, float3(0, 0, 0), OutterRadius); float SampleLength = ViewRayLength / Ksteps; //vSunDir = normalize(vSunDir); float cosTheta = dot(normalize(vSunDir), ViewDir); float3 tmpPos = Eye + 0.5 * SampleLength * ViewDir; for(int k=0; k<Ksteps; k++) { float SunRayLength = RaySphereIntersection(tmpPos, vSunDir, float3(0, 0, 0), OutterRadius); float3 TopAtmosphere = tmpPos + SunRayLength*vSunDir; ViewOD = OpticalDepth(Eye, tmpPos); SunOD = OpticalDepth(tmpPos, TopAtmosphere); tmpDensity = Density(length(tmpPos)-InnerRadius); Attenuation = exp(-RayleighCoeffs*(ViewOD+SunOD)); tmp += tmpDensity*Attenuation; tmpPos += SampleLength * ViewDir; } Irgb = RayleighCoeffs*RayleighPhaseFunction(cosTheta)*tmp*SampleLength; SkyColors[DTID.xy] = float4(Irgb, 1); } }  
    • By amadeus12
      I made my obj parser
      and It also calculate tagent space for normalmap.
      it seems calculation is wrong..
      any good suggestion for this?
      I can't upload my pics so I link my question.
      and I uploaded my code here

    • By Alessandro Pozzer
      Hi guys, 

      I dont know if this is the right section, but I did not know where to post this. 
      I am implementing a day night cycle on my game engine and I was wondering if there was a nice way to interpolate properly between warm colors, such as orange (sunset) and dark blue (night) color. I am using HSL format.
      Thank  you.
    • By thefoxbard
      I am aiming to learn Windows Forms with the purpose of creating some game-related tools, but since I know absolutely nothing about Windows Forms yet, I wonder:
      Is it possible to render a Direct3D 11 viewport inside a Windows Form Application? I see a lot of game editors that have a region of the window reserved for displaying and manipulating a 3D or 2D scene. That's what I am aiming for.
      Otherwise, would you suggest another library to create a GUI for game-related tools?
      I've found a tutorial here in gamedev that shows a solution:
      Though it's for D3D9, I'm not sure if it would work for D3D11?
  • Popular Now