Jump to content
  • Advertisement
Sign in to follow this  

Getting the true convex hull with Bowyer-Watson algorithm

This topic is 2745 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I'm trying to make a visualization module for Bezier and NURBS surfaces. I figured I'd start with a simple 2D Delaunay triangulation to understand how to divide up the surfaces. I made an implementation of the Bowyer-Watson incremental algorithm and started with a "super triangle" at (3M,0) (0,3M) (-3M,3M), where M is the largest value in X or Y in the set of points. It seems I did the algorithm right because I get a similar triangulation as the Delaunay() function in MATLAB, except I don't get the true convex hull. I've researched for a while and it seems that the "super triangle" method can produce this sort of problem, but I don't know of a good alternative. I tried using the Graham scan algorithm to get the convex hull and somehow combine the two, but I can't figure out how. If anyone is familiar with this problem, please let me know.

Share this post

Link to post
Share on other sites
Sign in to follow this  

  • Advertisement

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

GameDev.net is your game development community. Create an account for your GameDev Portfolio and participate in the largest developer community in the games industry.

Sign me up!