Jump to content
  • Advertisement
Sign in to follow this  
timthereaper

Getting the true convex hull with Bowyer-Watson algorithm

This topic is 2321 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

I'm trying to make a visualization module for Bezier and NURBS surfaces. I figured I'd start with a simple 2D Delaunay triangulation to understand how to divide up the surfaces. I made an implementation of the Bowyer-Watson incremental algorithm and started with a "super triangle" at (3M,0) (0,3M) (-3M,3M), where M is the largest value in X or Y in the set of points. It seems I did the algorithm right because I get a similar triangulation as the Delaunay() function in MATLAB, except I don't get the true convex hull. I've researched for a while and it seems that the "super triangle" method can produce this sort of problem, but I don't know of a good alternative. I tried using the Graham scan algorithm to get the convex hull and somehow combine the two, but I can't figure out how. If anyone is familiar with this problem, please let me know.

Share this post


Link to post
Share on other sites
Advertisement
Sign in to follow this  

  • Advertisement
×

Important Information

By using GameDev.net, you agree to our community Guidelines, Terms of Use, and Privacy Policy.

We are the game development community.

Whether you are an indie, hobbyist, AAA developer, or just trying to learn, GameDev.net is the place for you to learn, share, and connect with the games industry. Learn more About Us or sign up!

Sign me up!