Sign in to follow this  

OpenGL pixel precise rasterizing on different archs

Recommended Posts

oblivion81    100
Hi all,
for an application I'm developing I need to be able to

- draw lines of different widths and colours
- draw solid color filled triangles
- draw textured (no alpha) quads

Very easy...but...

All coordinates are integer in pixel space and, very important: [b]glReading all the pixels from the framebuffer
on two different machines, with two different graphic cards, running two different OS (Linux and freebsd),
must result in exactly the same sequence of bits (given an appropriate constant format conversion).[/b]

I think this is impossible to safely be achieved using opengl and hardware acceleration, since I bet different graphic
cards (from different vendors) may implement different algorithms for rasterization.
(OpenGl specs are clear about this, since they propose an algorithm but they also state that implementations may differ
under certain circumstances).
Also I don't really need hardware acceleration since I will be rendering very low speed and simple graphics.

Do you think I can achieve this by just disabling hardware acceleration? What happens in that case under linux, will I default on
MESA software rasterizer? And in that case, can I be sure it will always work or I am missing something?

thanks a lot !


Share this post

Link to post
Share on other sites
Brother Bob    10344
You are correct that your requirements are beyond what OpenGL guarantees. It does provide an ideal reference but also allows some deviations from it.

Your only option is a renderer you have control over. If you expect varying platforms, then Mesa may provide the control you need to get it to work for every platform you're interested in. That way you can ensure that the same renderer is used all the time. I don't know if Mesa used fixed point or floating point arithmetics internally in its default software renderer, but you may even have to force a non-floating point policy also since floating point arithmetics can behave differently on different platforms.

And I don't mean your program should use whatever version of Mesa is installed on the target platform; you need to supply it pre-compiled with your application (subject to its license of course, if it allows that) so you have full control over the renderer. Different platforms may ship with different versions of Mesa, and even compiled differently.

Share this post

Link to post
Share on other sites
tanzanite7    1410
I do not think such a guarantee is even possible - as long as floating point is used (almost certainly used) :/.

* different platforms/compilers have different default state of the FPU => results will differ (probably all of it can be overridden [afaik. VC on 64 platform won't allow changing calculation precision at all tho and the default in fact differs from the default used on (at least some) Unix/Linux OS - as you do not need Win, you might be in luck] - assuming none of the other libs etc will explode).
* different compilers can optimize differently - FP is highly susceptible to compounding errors (VC has an option to turn all optimizations off - which helps, but does not eliminate the problem. also, there are no guarantees the result will match with other compilers on other platforms - you can be certain they won't).
* 32bit and 64bit platforms have different amount of registers available - which means there will be different amount of downcast to float at different times (disabling all optimizations and forcing to downcast every FP value at every point will help).

So, to have any chance of, consistently, getting the same results:
* use a software renderer - obviously - and compile it yourself, applying the following rules as you need to do everywhere else too.
* all floating point optimizations must be turned off.
* including: compiler must be instructed to write out every temporary (and otherwise) value and reload them before using again (ie. downcast). This, besides being absolutely necessary anyway, should remove 32bit/64bit register allocation differences.
* use the exact same version of a compiler every time on every platform.
* override all of the FPU state by explicitly setting it to something you like.
* hope that different FPU from different manufacturers made over the years will give the same results (constantly down-casting to single precision floating point should remove thous differences when FPU is instructed to calculate at least in double precision mode)

To recap: if exact, repeatable, results are absolutely required - i would forget OpenGl and write a fixed-point renderer. ... or rather just forget it.

Or at least be aware of what kind of headache you are heading towards if you use floating point.

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Similar Content

    • By Zaphyk
      I am developing my engine using the OpenGL 3.3 compatibility profile. It runs as expected on my NVIDIA card and on my Intel Card however when I tried it on an AMD setup it ran 3 times worse than on the other setups. Could this be a AMD driver thing or is this probably a problem with my OGL code? Could a different code standard create such bad performance?
    • By Kjell Andersson
      I'm trying to get some legacy OpenGL code to run with a shader pipeline,
      The legacy code uses glVertexPointer(), glColorPointer(), glNormalPointer() and glTexCoordPointer() to supply the vertex information.
      I know that it should be using setVertexAttribPointer() etc to clearly define the layout but that is not an option right now since the legacy code can't be modified to that extent.
      I've got a version 330 vertex shader to somewhat work:
      #version 330 uniform mat4 osg_ModelViewProjectionMatrix; uniform mat4 osg_ModelViewMatrix; layout(location = 0) in vec4 Vertex; layout(location = 2) in vec4 Normal; // Velocity layout(location = 3) in vec3 TexCoord; // TODO: is this the right layout location? out VertexData { vec4 color; vec3 velocity; float size; } VertexOut; void main(void) { vec4 p0 = Vertex; vec4 p1 = Vertex + vec4(Normal.x, Normal.y, Normal.z, 0.0f); vec3 velocity = (osg_ModelViewProjectionMatrix * p1 - osg_ModelViewProjectionMatrix * p0).xyz; VertexOut.velocity = velocity; VertexOut.size = TexCoord.y; gl_Position = osg_ModelViewMatrix * Vertex; } What works is the Vertex and Normal information that the legacy C++ OpenGL code seem to provide in layout location 0 and 2. This is fine.
      What I'm not getting to work is the TexCoord information that is supplied by a glTexCoordPointer() call in C++.
      What layout location is the old standard pipeline using for glTexCoordPointer()? Or is this undefined?
      Side note: I'm trying to get an OpenSceneGraph 3.4.0 particle system to use custom vertex, geometry and fragment shaders for rendering the particles.
    • By markshaw001
      Hi i am new to this forum  i wanted to ask for help from all of you i want to generate real time terrain using a 32 bit heightmap i am good at c++ and have started learning Opengl as i am very interested in making landscapes in opengl i have looked around the internet for help about this topic but i am not getting the hang of the concepts and what they are doing can some here suggests me some good resources for making terrain engine please for example like tutorials,books etc so that i can understand the whole concept of terrain generation.
    • By KarimIO
      Hey guys. I'm trying to get my application to work on my Nvidia GTX 970 desktop. It currently works on my Intel HD 3000 laptop, but on the desktop, every bind textures specifically from framebuffers, I get half a second of lag. This is done 4 times as I have three RGBA textures and one depth 32F buffer. I tried to use debugging software for the first time - RenderDoc only shows SwapBuffers() and no OGL calls, while Nvidia Nsight crashes upon execution, so neither are helpful. Without binding it runs regularly. This does not happen with non-framebuffer binds.
      GLFramebuffer::GLFramebuffer(FramebufferCreateInfo createInfo) { glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); textures = new GLuint[createInfo.numColorTargets]; glGenTextures(createInfo.numColorTargets, textures); GLenum *DrawBuffers = new GLenum[createInfo.numColorTargets]; for (uint32_t i = 0; i < createInfo.numColorTargets; i++) { glBindTexture(GL_TEXTURE_2D, textures[i]); GLint internalFormat; GLenum format; TranslateFormats(createInfo.colorFormats[i], format, internalFormat); // returns GL_RGBA and GL_RGBA glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, createInfo.width, createInfo.height, 0, format, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); DrawBuffers[i] = GL_COLOR_ATTACHMENT0 + i; glBindTexture(GL_TEXTURE_2D, 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, textures[i], 0); } if (createInfo.depthFormat != FORMAT_DEPTH_NONE) { GLenum depthFormat; switch (createInfo.depthFormat) { case FORMAT_DEPTH_16: depthFormat = GL_DEPTH_COMPONENT16; break; case FORMAT_DEPTH_24: depthFormat = GL_DEPTH_COMPONENT24; break; case FORMAT_DEPTH_32: depthFormat = GL_DEPTH_COMPONENT32; break; case FORMAT_DEPTH_24_STENCIL_8: depthFormat = GL_DEPTH24_STENCIL8; break; case FORMAT_DEPTH_32_STENCIL_8: depthFormat = GL_DEPTH32F_STENCIL8; break; } glGenTextures(1, &depthrenderbuffer); glBindTexture(GL_TEXTURE_2D, depthrenderbuffer); glTexImage2D(GL_TEXTURE_2D, 0, depthFormat, createInfo.width, createInfo.height, 0, GL_DEPTH_COMPONENT, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthrenderbuffer, 0); } if (createInfo.numColorTargets > 0) glDrawBuffers(createInfo.numColorTargets, DrawBuffers); else glDrawBuffer(GL_NONE); if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) std::cout << "Framebuffer Incomplete\n"; glBindFramebuffer(GL_FRAMEBUFFER, 0); width = createInfo.width; height = createInfo.height; } // ... // FBO Creation FramebufferCreateInfo gbufferCI; gbufferCI.colorFormats =; gbufferCI.depthFormat = FORMAT_DEPTH_32; gbufferCI.numColorTargets = gbufferCFs.size(); gbufferCI.width = engine.settings.resolutionX; gbufferCI.height = engine.settings.resolutionY; gbufferCI.renderPass = nullptr; gbuffer = graphicsWrapper->CreateFramebuffer(gbufferCI); // Bind glBindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo); // Draw here... // Bind to textures glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, textures[0]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, textures[1]); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, textures[2]); glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, depthrenderbuffer); Here is an extract of my code. I can't think of anything else to include. I've really been butting my head into a wall trying to think of a reason but I can think of none and all my research yields nothing. Thanks in advance!
    • By Adrianensis
      Hi everyone, I've shared my 2D Game Engine source code. It's the result of 4 years working on it (and I still continue improving features ) and I want to share with the community. You can see some videos on youtube and some demo gifs on my twitter account.
      This Engine has been developed as End-of-Degree Project and it is coded in Javascript, WebGL and GLSL. The engine is written from scratch.
      This is not a professional engine but it's for learning purposes, so anyone can review the code an learn basis about graphics, physics or game engine architecture. Source code on this GitHub repository.
      I'm available for a good conversation about Game Engine / Graphics Programming
  • Popular Now