• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By racarate
      Hey everybody!
      I am trying to replicate all these cool on-screen debug visuals I see in all the SIGGRAPH and GDC talks, but I really don't know where to start.  The only resource I know of is almost 16 years old:
      http://number-none.com/product/Interactive Profiling, Part 1/index.html
      Does anybody have a more up-to-date reference?  Do people use minimal UI libraries like Dear ImgGui?  Also, If I am profiling OpenGL ES 3.0 (which doesn't have timer queries) is there really anything I can do to measure performance GPU-wise?  Or should I just chart CPU-side frame time?  I feel like this is something people re-invent for every game there has gotta be a tutorial out there... right?
       
       
    • By Achivai
      Hey, I am semi-new to 3d-programming and I've hit a snag. I have one object, let's call it Object A. This object has a long int array of 3d xyz-positions stored in it's vbo as an instanced attribute. I am using these numbers to instance object A a couple of thousand times. So far so good. 
      Now I've hit a point where I want to remove one of these instances of object A while the game is running, but I'm not quite sure how to go about it. At first my thought was to update the instanced attribute of Object A and change the positions to some dummy number that I could catch in the vertex shader and then decide there whether to draw the instance of Object A or not, but I think that would be expensive to do while the game is running, considering that it might have to be done several times every frame in some cases. 
      I'm not sure how to proceed, anyone have any tips?
    • By fleissi
      Hey guys!

      I'm new here and I recently started developing my own rendering engine. It's open source, based on OpenGL/DirectX and C++.
      The full source code is hosted on github:
      https://github.com/fleissna/flyEngine

      I would appreciate if people with experience in game development / engine desgin could take a look at my source code. I'm looking for honest, constructive criticism on how to improve the engine.
      I'm currently writing my master's thesis in computer science and in the recent year I've gone through all the basics about graphics programming, learned DirectX and OpenGL, read some articles on Nvidia GPU Gems, read books and integrated some of this stuff step by step into the engine.

      I know about the basics, but I feel like there is some missing link that I didn't get yet to merge all those little pieces together.

      Features I have so far:
      - Dynamic shader generation based on material properties
      - Dynamic sorting of meshes to be renderd based on shader and material
      - Rendering large amounts of static meshes
      - Hierarchical culling (detail + view frustum)
      - Limited support for dynamic (i.e. moving) meshes
      - Normal, Parallax and Relief Mapping implementations
      - Wind animations based on vertex displacement
      - A very basic integration of the Bullet physics engine
      - Procedural Grass generation
      - Some post processing effects (Depth of Field, Light Volumes, Screen Space Reflections, God Rays)
      - Caching mechanisms for textures, shaders, materials and meshes

      Features I would like to have:
      - Global illumination methods
      - Scalable physics
      - Occlusion culling
      - A nice procedural terrain generator
      - Scripting
      - Level Editing
      - Sound system
      - Optimization techniques

      Books I have so far:
      - Real-Time Rendering Third Edition
      - 3D Game Programming with DirectX 11
      - Vulkan Cookbook (not started yet)

      I hope you guys can take a look at my source code and if you're really motivated, feel free to contribute :-)
      There are some videos on youtube that demonstrate some of the features:
      Procedural grass on the GPU
      Procedural Terrain Engine
      Quadtree detail and view frustum culling

      The long term goal is to turn this into a commercial game engine. I'm aware that this is a very ambitious goal, but I'm sure it's possible if you work hard for it.

      Bye,

      Phil
    • By tj8146
      I have attached my project in a .zip file if you wish to run it for yourself.
      I am making a simple 2d top-down game and I am trying to run my code to see if my window creation is working and to see if my timer is also working with it. Every time I run it though I get errors. And when I fix those errors, more come, then the same errors keep appearing. I end up just going round in circles.  Is there anyone who could help with this? 
       
      Errors when I build my code:
      1>Renderer.cpp 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2039: 'string': is not a member of 'std' 1>c:\program files (x86)\windows kits\10\include\10.0.16299.0\ucrt\stddef.h(18): note: see declaration of 'std' 1>c:\users\documents\opengl\game\game\renderer.h(15): error C2061: syntax error: identifier 'string' 1>c:\users\documents\opengl\game\game\renderer.cpp(28): error C2511: 'bool Game::Rendering::initialize(int,int,bool,std::string)': overloaded member function not found in 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.h(9): note: see declaration of 'Game::Rendering' 1>c:\users\documents\opengl\game\game\renderer.cpp(35): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(36): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>c:\users\documents\opengl\game\game\renderer.cpp(43): error C2597: illegal reference to non-static member 'Game::Rendering::window' 1>Done building project "Game.vcxproj" -- FAILED. ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========  
       
      Renderer.cpp
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include "Renderer.h" #include "Timer.h" #include <iostream> namespace Game { GLFWwindow* window; /* Initialize the library */ Rendering::Rendering() { mClock = new Clock; } Rendering::~Rendering() { shutdown(); } bool Rendering::initialize(uint width, uint height, bool fullscreen, std::string window_title) { if (!glfwInit()) { return -1; } /* Create a windowed mode window and its OpenGL context */ window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL); if (!window) { glfwTerminate(); return -1; } /* Make the window's context current */ glfwMakeContextCurrent(window); glViewport(0, 0, (GLsizei)width, (GLsizei)height); glOrtho(0, (GLsizei)width, (GLsizei)height, 0, 1, -1); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glfwSwapInterval(1); glEnable(GL_SMOOTH); glEnable(GL_DEPTH_TEST); glEnable(GL_BLEND); glDepthFunc(GL_LEQUAL); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glEnable(GL_TEXTURE_2D); glLoadIdentity(); return true; } bool Rendering::render() { /* Loop until the user closes the window */ if (!glfwWindowShouldClose(window)) return false; /* Render here */ mClock->reset(); glfwPollEvents(); if (mClock->step()) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glfwSwapBuffers(window); mClock->update(); } return true; } void Rendering::shutdown() { glfwDestroyWindow(window); glfwTerminate(); } GLFWwindow* Rendering::getCurrentWindow() { return window; } } Renderer.h
      #pragma once namespace Game { class Clock; class Rendering { public: Rendering(); ~Rendering(); bool initialize(uint width, uint height, bool fullscreen, std::string window_title = "Rendering window"); void shutdown(); bool render(); GLFWwindow* getCurrentWindow(); private: GLFWwindow * window; Clock* mClock; }; } Timer.cpp
      #include <GL/glew.h> #include <GLFW/glfw3.h> #include <time.h> #include "Timer.h" namespace Game { Clock::Clock() : mTicksPerSecond(50), mSkipTics(1000 / mTicksPerSecond), mMaxFrameSkip(10), mLoops(0) { mLastTick = tick(); } Clock::~Clock() { } bool Clock::step() { if (tick() > mLastTick && mLoops < mMaxFrameSkip) return true; return false; } void Clock::reset() { mLoops = 0; } void Clock::update() { mLastTick += mSkipTics; mLoops++; } clock_t Clock::tick() { return clock(); } } TImer.h
      #pragma once #include "Common.h" namespace Game { class Clock { public: Clock(); ~Clock(); void update(); bool step(); void reset(); clock_t tick(); private: uint mTicksPerSecond; ufloat mSkipTics; uint mMaxFrameSkip; uint mLoops; uint mLastTick; }; } Common.h
      #pragma once #include <cstdio> #include <cstdlib> #include <ctime> #include <cstring> #include <cmath> #include <iostream> namespace Game { typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long ulong; typedef float ufloat; }  
      Game.zip
    • By lxjk
      Hi guys,
      There are many ways to do light culling in tile-based shading. I've been playing with this idea for a while, and just want to throw it out there.
      Because tile frustums are general small compared to light radius, I tried using cone test to reduce false positives introduced by commonly used sphere-frustum test.
      On top of that, I use distance to camera rather than depth for near/far test (aka. sliced by spheres).
      This method can be naturally extended to clustered light culling as well.
      The following image shows the general ideas

       
      Performance-wise I get around 15% improvement over sphere-frustum test. You can also see how a single light performs as the following: from left to right (1) standard rendering of a point light; then tiles passed the test of (2) sphere-frustum test; (3) cone test; (4) spherical-sliced cone test
       

       
      I put the details in my blog post (https://lxjk.github.io/2018/03/25/Improve-Tile-based-Light-Culling-with-Spherical-sliced-Cone.html), GLSL source code included!
       
      Eric
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL Eigen with modern OpenGL

This topic is 2187 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

So I'm getting back into OpenGL after a many years of work with D3D (the project I'm working on needs to be cross platform). Wanted to avoid fixed function (and the rest of the deprecated functionality) and stick with modern OpenGL (3.0,4.0).

So then comes the immediate question as to what vector/linear algebra library to use. The code base I am working with is already using Eigen for linear algebra. So i though i should use Eigen for my OpenGL work as well (since many people are saying they are doing this), and it would be a bit of a head ache to use multiple math libraries that were suppose to be doing many of the same things. Then I hit the alignment issue in Eigen, where all fixed sized types are 16 byte aligned.

The typical way i define a vertex in D3D is with a structure e.g.

struct MyVertex
{
Vec3 position;
Vec3 nornal;
Vec2 texcoord;
};


I know I can do something like this in OGL with interleaved VBOs, or i could split the vertices up in to component arrays. The issue is that if I replace Vec3 with Eigen::Vector3f (or the 2 float variants), Vector3f is 16 byte aligned. In the Eigen documentation, it states that it is recommended when declaring a struct containing Eigen fixed size types (such as Vector3f) that you should use the macro EIGEN_MAKE_ALIGNED_OPERATOR_NEW which redefines new to deal with alignment issues: http://eigen.tuxfami...genMembers.html

Would this not wreak havoc with an array of MyVertex, and specifying component offsets (or even component arrays)? Should I not be using Eigen types in my vertex structures or component arrays? Anyone have any experience with using OGL with Eigen as their math library and has dealt with these issues?

There isnt much documentation on the caveats of using OGL with Eigen (or maybe I'm just looking in the wrong place), the support module provided by Eigen seems to focus more on fixed function calls: http://eigen.tuxfami...rt__Module.html

Any insight would be greatly appreciated.

Share this post


Link to post
Share on other sites
Advertisement
Never heard of Eigen before, so can not be of any help there, sadly. Although you are not searching for a new math library i think it would not hurt to drop an alternative lib name anyway. GLM - it is quite convenient, mostly because it mimics glsl and gl conventions in general [including extendability + many extensions. ex: quaternions, simplex noise, etc] (it is also a header-only library - which is also quite convenient). Only complaint i have is that its half-float conversion is terribly inefficient (unless the latest release fixed it).

Share this post


Link to post
Share on other sites
Would this not wreak havoc with an array of MyVertex? Should I not be using Eigen types in my vertex structures or component arrays?
Yes, you probably shouldn't be using eigen types inside your vertex structs.
Your GL vertex structs are usually packed to be optimal for consumption by the GPU (which usually means: as small as possible), whereas your eigen structs are going to be padded/aligned to be optimal for SIMD processing by a CPU (which usually means allocated on 16-byte aligned boundaries). These two goals are (usually) contradictory, so you should use different types for each goal (CPU-optimised types for CPU-processing, GPU-optimised types for GPU-processing).

Share this post


Link to post
Share on other sites
Only vectorizable fixed vector and matrix types require 16bytes alignment. In other word, this concerns only types which sizes are a multiple of 16 bytes. So Eigen's types will never introduce any padding in your structs.

Share this post


Link to post
Share on other sites
I had no end of problems when I tried to use a SIMD aware math library in my project (slmath). First I had to allocate on a boundary and second there's a problem with containers in VC++ such that putting such aligned objects into them resulted in seg faults and all kinds of issues (I'm a heavy user of std::). In the end I decided it was too much trouble for the potential gain in speed, so I switched to glm::, which so far has been a joy to use (and program that doesn't seg fault runs much faster than one that does!). I wouldn't rule out using SIMD for very tight, focused algorithms though, and I'm waiting with anticipation for a future where compilers intelligently make use of SIMD themselves, so I don't have to.

Share this post


Link to post
Share on other sites

I had no end of problems when I tried to use a SIMD aware math library in my project (slmath). First I had to allocate on a boundary ...


There is a function in VC++ that allocates on a boundary. I imagine you are using new/delete and searching for a memory location that starts on a boundary by yourself.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement