• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
mgoss

MJP's CSM. Shadows moving

1 post in this topic

I'm using MJP's CSM shadow code and I'm having major issues with the shadows moving with the camera. Here a video to demonstrate what's going on. Also, is there a way to fix the dueling frustum issue? It's annoying seeing them pop in and out of corners of the screen.

[media]http://www.youtube.com/watch?v=bkfdq4sk4ec&feature=youtu.be[/media]

[CODE]
using System;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
namespace Craft
{
public class CascadedShadowMap
{
static SpriteBatch spriteBatch = Engine.SpriteBatch;
static int width = Engine.BackBufferWidth;
static int height = Engine.BackBufferHeight;
const int SHADOW_RESOLUTION = 1024;
const int SPLITS = 4;
static Effect depthEffect = Engine.Game.Content.Load<Effect>("Effects\\Shadows\\Depth");
static Effect depthLightEffect = Engine.Game.Content.Load<Effect>("Effects\\Shadows\\DepthLight");
static Effect shadowMapEffect = Engine.Game.Content.Load<Effect>("Effects\\Shadows\\ShadowMap");
static RenderTarget2D depthTexture = new RenderTarget2D(Engine.Graphics.GraphicsDevice, width, height, false, SurfaceFormat.Rg32, DepthFormat.Depth24);
static RenderTarget2D shadowMap = new RenderTarget2D(Engine.Graphics.GraphicsDevice, SHADOW_RESOLUTION * SPLITS, SHADOW_RESOLUTION, false, SurfaceFormat.Rg32, DepthFormat.Depth24);
static RenderTarget2D shadowOcclusion = new RenderTarget2D(Engine.Graphics.GraphicsDevice, width, height, false, SurfaceFormat.Color, DepthFormat.Depth24);
static Viewport splitViewport = new Viewport();
static Vector3[] frustumCornersVS = new Vector3[8];
static Vector3[] frustumCornersWS = new Vector3[8];
static Vector3[] frustumCornersLS = new Vector3[8];
static Vector3[] farFrustumCornersVS = new Vector3[4];
static Vector3[] splitFrustumCornersVS = new Vector3[8];
static OrthographicCamera[] lightCameras = new OrthographicCamera[SPLITS];
static Matrix[] lightViewProjectionMatrices = new Matrix[SPLITS];
static Vector2[] lightClipPlanes = new Vector2[SPLITS];
static float[] splitDepths = new float[SPLITS + 1];
const float nearClipOffset = 175.0f;
static bool showCascadeSplits = false;
static bool toggleJitter = true;
static Vector3 lightDirection = new Vector3(-1, -1, -1);
#region Properties
public static RenderTarget2D ShadowOcclusion
{
get { return shadowOcclusion; }
set { shadowOcclusion = value; }
}
public static bool ShowCascadeSplits
{
get { return showCascadeSplits; }
set { showCascadeSplits = value; }
}
public static Vector3 LightDirection
{
get { return lightDirection; }
set { lightDirection = value; }
}
#endregion
public static void Initialize()
{
shadowMapEffect.Parameters["ScreenResolutionSize"].SetValue(new Vector2(width, height));
shadowMapEffect.Parameters["ShadowMapSize"].SetValue(new Vector2(shadowMap.Width, shadowMap.Height));
depthEffect.Parameters["FarPlane"].SetValue(Camera.FarPlaneDistance);
splitViewport.MinDepth = 0;
splitViewport.MaxDepth = 1;
splitViewport.Width = SHADOW_RESOLUTION;
splitViewport.Height = SHADOW_RESOLUTION;
splitViewport.Y = 0;
}
private static void Render()
{
// Set our targets
Engine.Graphics.GraphicsDevice.SetRenderTarget(shadowMap);
Engine.Graphics.GraphicsDevice.Clear(ClearOptions.Target, Color.White, 1.0f, 0);
// Get corners of the main camera's bounding frustum
Matrix viewMatrix = Camera.View;
Camera.BoundingFrustum.GetCorners(frustumCornersWS);
Vector3.Transform(frustumCornersWS, ref viewMatrix, frustumCornersVS);
for (int i = 0; i < 4; i++)
{
farFrustumCornersVS[i] = frustumCornersVS[i + 4];
}
// Calculate the cascade splits. We calculate these so that each successive
// split is larger than the previous, giving the closest split the most amount
// of shadow detail.
float N = SPLITS;
float near = 1, far = Camera.FarPlaneDistance;
splitDepths[0] = near;
splitDepths[SPLITS] = far;
const float splitConstant = 0.95f; //0.95f
for (int i = 1; i < splitDepths.Length - 1; i++)
{
splitDepths[i] = splitConstant * near * (float)Math.Pow(far / near, i / N) + (1.0f - splitConstant) * ((near + (i / N)) * (far - near));
}
// Render our scene geometry to each split of the cascade
for (int i = 0; i < SPLITS; i++)
{
float minZ = splitDepths[i];
float maxZ = splitDepths[i + 1];
lightCameras[i] = CalculateFrustum(minZ, maxZ);
RenderShadowMap(i);
}
RenderShadowOcclusion();
}
protected static OrthographicCamera CalculateFrustum(float minZ, float maxZ)
{
// Shorten the view frustum according to the shadow view distance
Matrix cameraMatrix = Camera.InverseView;
for (int i = 0; i < 4; i++)
splitFrustumCornersVS[i] = frustumCornersVS[i + 4] * (minZ / Camera.FarPlaneDistance);
for (int i = 4; i < 8; i++)
splitFrustumCornersVS[i] = frustumCornersVS[i] * (maxZ / Camera.FarPlaneDistance);
Vector3.Transform(splitFrustumCornersVS, ref cameraMatrix, frustumCornersWS);
// Position the shadow-caster camera so that it's looking at the centroid,
// and backed up in the direction of the sunlight
Matrix viewMatrix = Matrix.CreateLookAt(Vector3.Zero - (lightDirection), Vector3.Zero, new Vector3(0, 1, 0));
// Determine the position of the frustum corners in light space
Vector3.Transform(frustumCornersWS, ref viewMatrix, frustumCornersLS);
// Calculate an orthographic projection by sizing a bounding box
// to the frustum coordinates in light space
Vector3 mins = frustumCornersLS[0];
Vector3 maxes = frustumCornersLS[0];
for (int i = 0; i < 8; i++)
{
if (frustumCornersLS[i].X > maxes.X)
maxes.X = frustumCornersLS[i].X;
else if (frustumCornersLS[i].X < mins.X)
mins.X = frustumCornersLS[i].X;
if (frustumCornersLS[i].Y > maxes.Y)
maxes.Y = frustumCornersLS[i].Y;
else if (frustumCornersLS[i].Y < mins.Y)
mins.Y = frustumCornersLS[i].Y;
if (frustumCornersLS[i].Z > maxes.Z)
maxes.Z = frustumCornersLS[i].Z;
else if (frustumCornersLS[i].Z < mins.Z)
mins.Z = frustumCornersLS[i].Z;
}
if (toggleJitter)
{
// We snap the camera to 1 pixel increments so that moving the camera does not cause the shadows to jitter.
// This is a matter of integer dividing by the world space size of a texel
float diagonalLength = (frustumCornersWS[0] - frustumCornersWS[6]).Length();
diagonalLength += 2; //Without this, the shadow map isn't big enough in the world.
float worldsUnitsPerTexel = diagonalLength / (float)SHADOW_RESOLUTION;
Vector3 borderOffset = (new Vector3(diagonalLength, diagonalLength, diagonalLength) - (maxes - mins)) * 0.5f;
maxes += borderOffset;
mins -= borderOffset;
mins /= worldsUnitsPerTexel;
mins.X = (float)Math.Floor(mins.X);
mins.Y = (float)Math.Floor(mins.Y);
mins.Z = (float)Math.Floor(mins.Z);
mins *= worldsUnitsPerTexel;
maxes /= worldsUnitsPerTexel;
maxes.X = (float)Math.Floor(maxes.X);
maxes.Y = (float)Math.Floor(maxes.Y);
maxes.Z = (float)Math.Floor(maxes.Z);
maxes *= worldsUnitsPerTexel;
}
OrthographicCamera lightCamera = new OrthographicCamera(mins.X, maxes.X, mins.Y, maxes.Y, -maxes.Z - nearClipOffset, -mins.Z);
lightCamera.SetViewMatrix(ref viewMatrix);
return lightCamera;
}
private static void RenderShadowMap(int splitIndex)
{
splitViewport.X = splitIndex * SHADOW_RESOLUTION;
Engine.Graphics.GraphicsDevice.Viewport = splitViewport;
depthLightEffect.CurrentTechnique = depthLightEffect.Techniques["Depth"];
depthLightEffect.Parameters["ViewProjection"].SetValue(lightCameras[splitIndex].ViewProjectionMatrix);
BlockRender.Draw(depthLightEffect, lightCameras[splitIndex].BoundingFrustum);
}
/// <summary>
/// Renders a texture containing the final shadow occlusion
/// </summary>
private static void RenderShadowOcclusion()
{
Engine.Graphics.GraphicsDevice.SetRenderTarget(shadowOcclusion);
Engine.Graphics.GraphicsDevice.Clear(ClearOptions.Target, Color.White, 1.0f, 0);
// We'll use these clip planes to determine which split a pixel belongs to
for (int i = 0; i < SPLITS; i++)
{
lightClipPlanes[i].X = -splitDepths[i];
lightClipPlanes[i].Y = -splitDepths[i + 1];
lightCameras[i].GetViewProjMatrix(out lightViewProjectionMatrices[i]);
}
shadowMapEffect.Parameters["ViewProjection"].SetValue(Camera.ViewProjection);
shadowMapEffect.Parameters["InverseView"].SetValue(Camera.InverseView);
shadowMapEffect.Parameters["LightViewProjection"].SetValue(lightViewProjectionMatrices);
shadowMapEffect.Parameters["FrustumCornersVS"].SetValue(farFrustumCornersVS);
shadowMapEffect.Parameters["ClipPlanes"].SetValue(lightClipPlanes);
shadowMapEffect.Parameters["ShadowMap"].SetValue(shadowMap);
shadowMapEffect.Parameters["DepthTexture"].SetValue(depthTexture);
shadowMapEffect.Parameters["ShowSplitColors"].SetValue(showCascadeSplits);
shadowMapEffect.CurrentTechnique.Passes[0].Apply();
DeferredRenderer.FullScreenQuad.Draw();
}
private static void CreateDepthTexture()
{
Engine.Graphics.GraphicsDevice.SetRenderTarget(depthTexture);
Engine.Graphics.GraphicsDevice.Clear(ClearOptions.Target, Color.White, 1.0f, 0);
depthEffect.Parameters["ViewProjection"].SetValue(Camera.ViewProjection);
BlockRender.Draw(depthEffect);
Engine.Graphics.GraphicsDevice.SetRenderTarget(null);
}
public static void Draw()
{
CreateDepthTexture();
Render();
//Blur.BlurShadow(Blur.shadowBlurTarg, shadowOcclusion, 0);
//Blur.BlurShadow(shadowOcclusion, Blur.shadowBlurTarg, 1);
}
/// <summary>
/// Draw the render targets to screen
/// </summary>
public static void DrawRenderTargets()
{
spriteBatch.Begin(0, BlendState.Opaque, SamplerState.PointClamp, null, null);
{
spriteBatch.Draw(shadowMap, new Rectangle(0, 0, 256, 256), Color.White);
spriteBatch.Draw(depthTexture, new Rectangle(0, 256, 256, 256), Color.White);
spriteBatch.Draw(shadowOcclusion, new Rectangle(0, 512, 256, 256), Color.White);
}
spriteBatch.End();
}
public static void HandleInput(GameTime gameTime, InputState inputState)
{
if (inputState.IsTriggered(Action.ToggleCascadeSplits)) //F7
{
showCascadeSplits = !showCascadeSplits;
}
if (inputState.IsTriggered(Action.ToggleJitter)) //J
{
toggleJitter = !toggleJitter;
}
}
}
}
[/CODE]

[CODE]
float4x4 World;
float4x4 ViewProjection;
float4x4 InverseView;
static const int SPLITS = 4;
float4x4 LightViewProjection [SPLITS];
float2 ClipPlanes[SPLITS];
float2 ShadowMapSize;
float2 ScreenResolutionSize;
float3 FrustumCornersVS [4];
bool ShowSplitColors = false;
static const float SHADOW_BIAS = 0.01f;
static const float DARKEN_FACTOR = 100.0f;
texture DepthTexture;
sampler DepthTextureSampler = sampler_state
{
Texture = <DepthTexture>;
MinFilter = Point;
MagFilter = Point;
MipFilter = None;
};
texture ShadowMap;
sampler ShadowMapSampler = sampler_state
{
Texture = <ShadowMap>;
MinFilter = Point;
MagFilter = Point;
MipFilter = None;
};
float2 sampleShadowMap(float2 UV)
{
if (UV.x < 0 || UV.x > 1 || UV.y < 0 || UV.y > 1)
{
return float2(1, 1);
}
return tex2D(ShadowMapSampler, UV).rg;
}
struct VertexShaderInput
{
float4 Position : POSITION;
float3 TexCoordAndCornerIndex : TEXCOORD0;
};
struct VertexShaderOutput
{
float4 Position : POSITION;
float2 TexCoord : TEXCOORD0;
float3 FrustumCornerVS : TEXCOORD1;
};
// Vertex shader for rendering the full-screen quad used for calculating
// the shadow occlusion factor.
VertexShaderOutput VertexShaderFunction (VertexShaderInput input)
{
VertexShaderOutput output;
// Offset the position by half a pixel to correctly align texels to pixels
output.Position.x = input.Position.x - (1.0f / ScreenResolutionSize.x);
output.Position.y = input.Position.y + (1.0f / ScreenResolutionSize.y);
output.Position.z = input.Position.z;
output.Position.w = 1.0f;

// Pass along the texture coordiante and the position of the frustum corner
output.TexCoord = input.TexCoordAndCornerIndex.xy;
output.FrustumCornerVS = FrustumCornersVS[input.TexCoordAndCornerIndex.z];
return output;
}
// Pixel shader for computing the shadow occlusion factor
float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0
{
// Reconstruct view-space position from the depth buffer
float pixelDepth = tex2D(DepthTextureSampler, input.TexCoord).r;
float4 position = float4(pixelDepth * input.FrustumCornerVS, 1.0f);
// Figure out which split this pixel belongs to, based on view-space depth.
float4x4 lightViewProjection = LightViewProjection[0];
float offset = 0;

float3 splitColors [4];
splitColors[0] = float3(1, 0, 0);
splitColors[1] = float3(0, 1, 0);
splitColors[2] = float3(0, 0, 1);
splitColors[3] = float3(1, 1, 0);
float3 color = splitColors[0];
int currentSplit = 0;
for (int i = 1; i < SPLITS; i++)
{
if (position.z <= ClipPlanes[i].x && position.z > ClipPlanes[i].y)
{
lightViewProjection = LightViewProjection[i];
offset = i / (float)SPLITS;
color = splitColors[i];
currentSplit = i;
}
}

// Determine the depth of the pixel with respect to the light
float4x4 inverseLVP = mul(InverseView, lightViewProjection);
float4 positionLight = mul(position, inverseLVP);

float lightDepth = (positionLight.z / positionLight.w) - SHADOW_BIAS;

// Transform from light space to shadow map texture space.
float2 shadowTexCoord = 0.5 * positionLight.xy / positionLight.w + float2(0.5f, 0.5f);
shadowTexCoord.x = shadowTexCoord.x / SPLITS + offset;
shadowTexCoord.y = 1.0f - shadowTexCoord.y;

// Offset the coordinate by half a texel so we sample it correctly
shadowTexCoord += (0.5f / ShadowMapSize);
float shadow = 1;
lightDepth += 0.01f;

if (lightDepth < 1)
{
float2 shadowMap = sampleShadowMap(shadowTexCoord);
//// Check if we're in shadow
//float lit_factor = (lightDepth < shadowMap.x);
//// Variance shadow mapping
//float E_x2 = shadowMap.y;
//float Ex_2 = shadowMap.x * shadowMap.x;
//float variance = min(max(E_x2 - Ex_2, 0.0) + 1.0f / 2000, 1);
//float m_d = (shadowMap.x - lightDepth);
//float p = variance / (variance + m_d * m_d);
//shadow = clamp(max(lit_factor, p), 0.1, 1.0f);
//Calculate the Shadow Factor
float shadowFactor = exp((DARKEN_FACTOR * 0.5f) * (shadowMap - lightDepth));
shadowFactor = clamp(shadowFactor, 0.45, 1.0);
shadow = shadowFactor;
}
if (!ShowSplitColors)
return shadow;
else
return float4(shadow + color, 1);
}
technique Shadow
{
pass p0
{
VertexShader = compile vs_3_0 VertexShaderFunction();
PixelShader = compile ps_3_0 PixelShaderFunction();
}
}

[/CODE]
0

Share this post


Link to post
Share on other sites
Hi!

If the problem is with the matrices, you should check [url="http://www.gamedev.net/topic/627157-csm-based-on-nvidias-paper-swimming/"]this topic[/url]. It's working for me now.
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0