Sign in to follow this  
pnt1614

DX11 How to get an value from Byte Address buffer in DX11, HLSL?

Recommended Posts

I try to modidy the shader code of OIT, [url="http://www.yakiimo3d.com/2010/07/25/dx11-order-independent-transparency-with-msaa/"]http://www.yakiimo3d.com/2010/07/25/dx11-order-independent-transparency-with-msaa/[/url], and the source code can be downloaded from [url="http://yakiimo3d.codeplex.com/releases/view/49570"]http://yakiimo3d.codeplex.com/releases/view/49570[/url]. But in StoreFragments.hlsl, when they render into a linked list, they use a byte address buffer for offset.
[CODE]
void StoreFragmentsPS( SceneVS_Output input )
{
uint x = input.pos.x; // [0,g_nFrameWidth]
uint y = input.pos.y; // [0,g_nFrameHeight]
// Create fragment data.
uint4 nColor = saturate( input.color ) * 255;
FragmentLink element;
element.fragmentData.nColor = (nColor.x) | (nColor.y << 8) | (nColor.z << 16) | (nColor.a << 24);
element.fragmentData.fDepth = input.pos.z;

// Increment and get current pixel count.
uint nPixelCount= FLBuffer.IncrementCounter();


// Read and update Start Offset Buffer.
uint nIndex = y * g_nFrameWidth + x;
uint nStartOffsetAddress = 4 * nIndex;
uint nOldStartOffset;

StartOffsetBuffer.InterlockedExchange(
nStartOffsetAddress, nPixelCount, nOldStartOffset );


if ( nOldStartOffset != 0xFFFFFFFF ) {
//get an error: array, matrix, vector or indexable object.......
uint index = StartOffsetBuffer[ idx ];
}
// Store fragment link.
element.nNext = nOldStartOffset;
FLBuffer[ nPixelCount ] = element;
}
[/CODE]

With the function InterlockedExchange, nPixelCount value will be saved at nStartOffsetAddress position and we can get the old value. Hence, we can use nOldStartOffset value as an index to get the previous/next element, but why did I get that error? and how to solve it?
Anybody help me, please? Thank in advance.

Share this post


Link to post
Share on other sites
Hi!

I’m curious, why do you need to check the old address? Do you want to find out whether you got the “tail” of the list? What do you like to achieve? Maybe we can assist a little. [img]http://public.gamedev.net//public/style_emoticons/default/smile.png[/img] Looks like you’re only writing if it is the tail, thus you don’t really build up a list. The OIT code would work just fine without it.

[CODE]
void StoreFragmentsPS( SceneVS_Output input )
{
...
//if ( nOldStartOffset != 0xFFFFFFFF ) {
//get an error: array, matrix, vector or indexable object.......
// uint index = StartOffsetBuffer[ idx ];
//}
// Store fragment link.
element.nNext = nOldStartOffset;
FLBuffer[ nPixelCount ] = element;
//}
[/CODE]

But to answer your question, firstly the variable idx doesn’t exist and secondly only structured buffers have an array index operator. For ByteAddressBuffer you can use [url="http://msdn.microsoft.com/en-us/library/windows/desktop/ff471453%28v=vs.85%29.aspx"]Load[/url].
[CODE]uint index = StartOffsetBuffer.Load(someByteAddress);[/CODE]
The shader that does the sorting of the fragments also uses Load to read from the StartOffsetBuffer btw.

Cheers!

Share this post


Link to post
Share on other sites
Thank you so much, Tsus, I have tried the Load function before and I got the same error, but maybe there is something wrong, now it is working.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this  

  • Forum Statistics

    • Total Topics
      627778
    • Total Posts
      2979025
  • Similar Content

    • By AxeGuywithanAxe
      I wanted to get some advice on what everyone thinks of this debugger, I've been getting some strange results from testing my code and I wanted to see if anyone else had an issues.
      For instance, I added three "ClearRenderTargetView" calls and three "Draw full screen quad" calls and my reported fps became a fifth of what it usually was. Thank you.
    • By schneckerstein
      Hello,
      I manged so far to implement NVIDIA's NDF-Filtering at a basic level (the paper can be found here). Here is my code so far:
      //... // project the half vector on the normal (?) float3 hppWS = halfVector / dot(halfVector, geometricNormal) float2 hpp = float2(dot(hppWS, wTangent), dot(hppWS, wBitangent)); // compute the pixel footprint float2x2 dhduv = float2x2(ddx(hpp), ddy(hpp)); // compute the rectangular area of the pixel footprint float2 rectFp = min((abs(dhduv[0]) + abs(dhduv[1])) * 0.5, 0.3); // map the area to ggx roughness float2 covMx = rectFp * rectFp * 2; roughness = sqrt(roughness * roughness + covMx); //... Now I want combine this with LEAN mapping as state in Chapter 5.5 of the NDF paper.
      But I struggle to understand what theses sections actually means in Code: 
      I suppose the first-order moments are the B coefficent of the LEAN map, however things like
      float3 hppWS = halfVector / dot(halfVector, float3(lean_B, 0)); doesn't bring up anything usefull.
      Next theres:
      This simply means:
      // M and B are the coefficents from the LEAN map float2x2 sigma_mat = float2x2( M.x - B.x * B.x, M.z - B.x * B.y, M.z - B.x * B.y, M.y - B.y * B.y); does it?
      Finally:
      This is the part confuses me the most: how am I suppose to convolute two matrices? I know the concept of convolution in terms of functions, not matrices. Should I multiple them? That didn't make any usefully output.
      I hope someone can help with this maybe too specific question, I'm really despaired to make this work and i've spend too many hours of trial & error...
      Cheers,
      Julian
    • By Baemz
      Hello,
      I've been working on some culling-techniques for a project. We've built our own engine so pretty much everything is built from scratch. I've set up a frustum with the following code, assuming that the FOV is 90 degrees.
      float angle = CU::ToRadians(45.f); Plane<float> nearPlane(Vector3<float>(0, 0, aNear), Vector3<float>(0, 0, -1)); Plane<float> farPlane(Vector3<float>(0, 0, aFar), Vector3<float>(0, 0, 1)); Plane<float> right(Vector3<float>(0, 0, 0), Vector3<float>(angle, 0, -angle)); Plane<float> left(Vector3<float>(0, 0, 0), Vector3<float>(-angle, 0, -angle)); Plane<float> up(Vector3<float>(0, 0, 0), Vector3<float>(0, angle, -angle)); Plane<float> down(Vector3<float>(0, 0, 0), Vector3<float>(0, -angle, -angle)); myVolume.AddPlane(nearPlane); myVolume.AddPlane(farPlane); myVolume.AddPlane(right); myVolume.AddPlane(left); myVolume.AddPlane(up); myVolume.AddPlane(down); When checking the intersections I am using a BoundingSphere of my models, which is calculated by taking the average position of all vertices and then choosing the furthest distance to a vertex for radius. The actual intersection test looks like this, where the "myFrustum90" is the actual frustum described above.
      The orientationInverse is the viewMatrix in this case.
      bool CFrustum::Intersects(const SFrustumCollider& aCollider) { CU::Vector4<float> position = CU::Vector4<float>(aCollider.myCenter.x, aCollider.myCenter.y, aCollider.myCenter.z, 1.f) * myOrientationInverse; return myFrustum90.Inside({ position.x, position.y, position.z }, aCollider.myRadius); } The Inside() function looks like this.
      template <typename T> bool PlaneVolume<T>::Inside(Vector3<T> aPosition, T aRadius) const { for (unsigned short i = 0; i < myPlaneList.size(); ++i) { if (myPlaneList[i].ClassifySpherePlane(aPosition, aRadius) > 0) { return false; } } return true; } And this is the ClassifySpherePlane() function. (The plane is defined as a Vector4 called myABCD, where ABC is the normal)
      template <typename T> inline int Plane<T>::ClassifySpherePlane(Vector3<T> aSpherePosition, float aSphereRadius) const { float distance = (aSpherePosition.Dot(myNormal)) - myABCD.w; // completely on the front side if (distance >= aSphereRadius) { return 1; } // completely on the backside (aka "inside") if (distance <= -aSphereRadius) { return -1; } //sphere intersects the plane return 0; }  
      Please bare in mind that this code is not optimized nor well-written by any means. I am just looking to get it working.
      The result of this culling is that the models seem to be culled a bit "too early", so that the culling is visible and the models pops away.
      How do I get the culling to work properly?
      I have tried different techniques but haven't gotten any of them to work.
      If you need more code or explanations feel free to ask for it.

      Thanks.
       
    • By evelyn4you
      hi,
      i have read very much about the binding of a constantbuffer to a shader but something is still unclear to me.
      e.g. when performing :   vertexshader.setConstantbuffer ( buffer,  slot )
       is the buffer bound
      a.  to the VertexShaderStage
      or
      b. to the VertexShader that is currently set as the active VertexShader
      Is it possible to bind a constantBuffer to a VertexShader e.g. VS_A and keep this binding even after the active VertexShader has changed ?
      I mean i want to bind constantbuffer_A  to VS_A, an Constantbuffer_B to VS_B  and  only use updateSubresource without using setConstantBuffer command every time.

      Look at this example:
      SetVertexShader ( VS_A )
      updateSubresource(buffer_A)
      vertexshader.setConstantbuffer ( buffer_A,  slot_A )
      perform drawcall       ( buffer_A is used )

      SetVertexShader ( VS_B )
      updateSubresource(buffer_B)
      vertexshader.setConstantbuffer ( buffer_B,  slot_A )
      perform drawcall   ( buffer_B is used )
      SetVertexShader ( VS_A )
      perform drawcall   (now which buffer is used ??? )
       
      I ask this question because i have made a custom render engine an want to optimize to
      the minimum  updateSubresource, and setConstantbuffer  calls
       
       
       
       
       
    • By noodleBowl
      I got a quick question about buffers when it comes to DirectX 11. If I bind a buffer using a command like:
      IASetVertexBuffers IASetIndexBuffer VSSetConstantBuffers PSSetConstantBuffers  and then later on I update that bound buffer's data using commands like Map/Unmap or any of the other update commands.
      Do I need to rebind the buffer again in order for my update to take effect? If I dont rebind is that really bad as in I get a performance hit? My thought process behind this is that if the buffer is already bound why do I need to rebind it? I'm using that same buffer it is just different data
       
  • Popular Now