• Advertisement
  • Popular Tags

  • Popular Now

  • Advertisement
  • Similar Content

    • By lxjk
      Hi guys,
      There are many ways to do light culling in tile-based shading. I've been playing with this idea for a while, and just want to throw it out there.
      Because tile frustums are general small compared to light radius, I tried using cone test to reduce false positives introduced by commonly used sphere-frustum test.
      On top of that, I use distance to camera rather than depth for near/far test (aka. sliced by spheres).
      This method can be naturally extended to clustered light culling as well.
      The following image shows the general ideas

       
      Performance-wise I get around 15% improvement over sphere-frustum test. You can also see how a single light performs as the following: from left to right (1) standard rendering of a point light; then tiles passed the test of (2) sphere-frustum test; (3) cone test; (4) spherical-sliced cone test
       

       
      I put the details in my blog post (https://lxjk.github.io/2018/03/25/Improve-Tile-based-Light-Culling-with-Spherical-sliced-Cone.html), GLSL source code included!
       
      Eric
    • By Fadey Duh
      Good evening everyone!

      I was wondering if there is something equivalent of  GL_NV_blend_equation_advanced for AMD?
      Basically I'm trying to find more compatible version of it.

      Thank you!
    • By Jens Eckervogt
      Hello guys, 
       
      Please tell me! 
      How do I know? Why does wavefront not show for me?
      I already checked I have non errors yet.
      using OpenTK; using System.Collections.Generic; using System.IO; using System.Text; namespace Tutorial_08.net.sourceskyboxer { public class WaveFrontLoader { private static List<Vector3> inPositions; private static List<Vector2> inTexcoords; private static List<Vector3> inNormals; private static List<float> positions; private static List<float> texcoords; private static List<int> indices; public static RawModel LoadObjModel(string filename, Loader loader) { inPositions = new List<Vector3>(); inTexcoords = new List<Vector2>(); inNormals = new List<Vector3>(); positions = new List<float>(); texcoords = new List<float>(); indices = new List<int>(); int nextIdx = 0; using (var reader = new StreamReader(File.Open("Contents/" + filename + ".obj", FileMode.Open), Encoding.UTF8)) { string line = reader.ReadLine(); int i = reader.Read(); while (true) { string[] currentLine = line.Split(); if (currentLine[0] == "v") { Vector3 pos = new Vector3(float.Parse(currentLine[1]), float.Parse(currentLine[2]), float.Parse(currentLine[3])); inPositions.Add(pos); if (currentLine[1] == "t") { Vector2 tex = new Vector2(float.Parse(currentLine[1]), float.Parse(currentLine[2])); inTexcoords.Add(tex); } if (currentLine[1] == "n") { Vector3 nom = new Vector3(float.Parse(currentLine[1]), float.Parse(currentLine[2]), float.Parse(currentLine[3])); inNormals.Add(nom); } } if (currentLine[0] == "f") { Vector3 pos = inPositions[0]; positions.Add(pos.X); positions.Add(pos.Y); positions.Add(pos.Z); Vector2 tc = inTexcoords[0]; texcoords.Add(tc.X); texcoords.Add(tc.Y); indices.Add(nextIdx); ++nextIdx; } reader.Close(); return loader.loadToVAO(positions.ToArray(), texcoords.ToArray(), indices.ToArray()); } } } } } And It have tried other method but it can't show for me.  I am mad now. Because any OpenTK developers won't help me.
      Please help me how do I fix.

      And my download (mega.nz) should it is original but I tried no success...
      - Add blend source and png file here I have tried tried,.....  
       
      PS: Why is our community not active? I wait very longer. Stop to lie me!
      Thanks !
    • By codelyoko373
      I wasn't sure if this would be the right place for a topic like this so sorry if it isn't.
      I'm currently working on a project for Uni using FreeGLUT to make a simple solar system simulation. I've got to the point where I've implemented all the planets and have used a Scene Graph to link them all together. The issue I'm having with now though is basically the planets and moons orbit correctly at their own orbit speeds.
      I'm not really experienced with using matrices for stuff like this so It's likely why I can't figure out how exactly to get it working. This is where I'm applying the transformation matrices, as well as pushing and popping them. This is within the Render function that every planet including the sun and moons will have and run.
      if (tag != "Sun") { glRotatef(orbitAngle, orbitRotation.X, orbitRotation.Y, orbitRotation.Z); } glPushMatrix(); glTranslatef(position.X, position.Y, position.Z); glRotatef(rotationAngle, rotation.X, rotation.Y, rotation.Z); glScalef(scale.X, scale.Y, scale.Z); glDrawElements(GL_TRIANGLES, mesh->indiceCount, GL_UNSIGNED_SHORT, mesh->indices); if (tag != "Sun") { glPopMatrix(); } The "If(tag != "Sun")" parts are my attempts are getting the planets to orbit correctly though it likely isn't the way I'm meant to be doing it. So I was wondering if someone would be able to help me? As I really don't have an idea on what I would do to get it working. Using the if statement is truthfully the closest I've got to it working but there are still weird effects like the planets orbiting faster then they should depending on the number of planets actually be updated/rendered.
    • By Jens Eckervogt
      Hello everyone, 
      I have problem with texture
      using System; using OpenTK; using OpenTK.Input; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL4; using System.Drawing; using System.Reflection; namespace Tutorial_05 { class Game : GameWindow { private static int WIDTH = 1200; private static int HEIGHT = 720; private static KeyboardState keyState; private int vaoID; private int vboID; private int iboID; private Vector3[] vertices = { new Vector3(-0.5f, 0.5f, 0.0f), // V0 new Vector3(-0.5f, -0.5f, 0.0f), // V1 new Vector3(0.5f, -0.5f, 0.0f), // V2 new Vector3(0.5f, 0.5f, 0.0f) // V3 }; private Vector2[] texcoords = { new Vector2(0, 0), new Vector2(0, 1), new Vector2(1, 1), new Vector2(1, 0) }; private int[] indices = { 0, 1, 3, 3, 1, 2 }; private string vertsrc = @"#version 450 core in vec3 position; in vec2 textureCoords; out vec2 pass_textureCoords; void main(void) { gl_Position = vec4(position, 1.0); pass_textureCoords = textureCoords; }"; private string fragsrc = @"#version 450 core in vec2 pass_textureCoords; out vec4 out_color; uniform sampler2D textureSampler; void main(void) { out_color = texture(textureSampler, pass_textureCoords); }"; private int programID; private int vertexShaderID; private int fragmentShaderID; private int textureID; private Bitmap texsrc; public Game() : base(WIDTH, HEIGHT, GraphicsMode.Default, "Tutorial 05 - Texturing", GameWindowFlags.Default, DisplayDevice.Default, 4, 5, GraphicsContextFlags.Default) { } protected override void OnLoad(EventArgs e) { base.OnLoad(e); CursorVisible = true; GL.GenVertexArrays(1, out vaoID); GL.BindVertexArray(vaoID); GL.GenBuffers(1, out vboID); GL.BindBuffer(BufferTarget.ArrayBuffer, vboID); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(vertices.Length * Vector3.SizeInBytes), vertices, BufferUsageHint.StaticDraw); GL.GenBuffers(1, out iboID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, iboID); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(indices.Length * sizeof(int)), indices, BufferUsageHint.StaticDraw); vertexShaderID = GL.CreateShader(ShaderType.VertexShader); GL.ShaderSource(vertexShaderID, vertsrc); GL.CompileShader(vertexShaderID); fragmentShaderID = GL.CreateShader(ShaderType.FragmentShader); GL.ShaderSource(fragmentShaderID, fragsrc); GL.CompileShader(fragmentShaderID); programID = GL.CreateProgram(); GL.AttachShader(programID, vertexShaderID); GL.AttachShader(programID, fragmentShaderID); GL.LinkProgram(programID); // Loading texture from embedded resource texsrc = new Bitmap(Assembly.GetEntryAssembly().GetManifestResourceStream("Tutorial_05.example.png")); textureID = GL.GenTexture(); GL.BindTexture(TextureTarget.Texture2D, textureID); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMagFilter, (int)All.Linear); GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMinFilter, (int)All.Linear); GL.TexImage2D(TextureTarget.Texture2D, 0, PixelInternalFormat.Rgba, texsrc.Width, texsrc.Height, 0, PixelFormat.Bgra, PixelType.UnsignedByte, IntPtr.Zero); System.Drawing.Imaging.BitmapData bitmap_data = texsrc.LockBits(new Rectangle(0, 0, texsrc.Width, texsrc.Height), System.Drawing.Imaging.ImageLockMode.ReadOnly, System.Drawing.Imaging.PixelFormat.Format32bppRgb); GL.TexSubImage2D(TextureTarget.Texture2D, 0, 0, 0, texsrc.Width, texsrc.Height, PixelFormat.Bgra, PixelType.UnsignedByte, bitmap_data.Scan0); texsrc.UnlockBits(bitmap_data); GL.Enable(EnableCap.Texture2D); GL.BufferData(BufferTarget.TextureBuffer, (IntPtr)(texcoords.Length * Vector2.SizeInBytes), texcoords, BufferUsageHint.StaticDraw); GL.BindAttribLocation(programID, 0, "position"); GL.BindAttribLocation(programID, 1, "textureCoords"); } protected override void OnResize(EventArgs e) { base.OnResize(e); GL.Viewport(0, 0, ClientRectangle.Width, ClientRectangle.Height); } protected override void OnUpdateFrame(FrameEventArgs e) { base.OnUpdateFrame(e); keyState = Keyboard.GetState(); if (keyState.IsKeyDown(Key.Escape)) { Exit(); } } protected override void OnRenderFrame(FrameEventArgs e) { base.OnRenderFrame(e); // Prepare for background GL.Clear(ClearBufferMask.ColorBufferBit); GL.ClearColor(Color4.Red); // Draw traingles GL.EnableVertexAttribArray(0); GL.EnableVertexAttribArray(1); GL.BindVertexArray(vaoID); GL.UseProgram(programID); GL.BindBuffer(BufferTarget.ArrayBuffer, vboID); GL.VertexAttribPointer(0, 3, VertexAttribPointerType.Float, false, 0, IntPtr.Zero); GL.ActiveTexture(TextureUnit.Texture0); GL.BindTexture(TextureTarget.Texture3D, textureID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, iboID); GL.DrawElements(BeginMode.Triangles, indices.Length, DrawElementsType.UnsignedInt, 0); GL.DisableVertexAttribArray(0); GL.DisableVertexAttribArray(1); SwapBuffers(); } protected override void OnClosed(EventArgs e) { base.OnClosed(e); GL.DeleteVertexArray(vaoID); GL.DeleteBuffer(vboID); } } } I can not remember where do I add GL.Uniform2();
  • Advertisement
  • Advertisement
Sign in to follow this  

OpenGL Does it save on performance/memory a whole lot to use vec3 instead of vec4?

This topic is 2181 days old which is more than the 365 day threshold we allow for new replies. Please post a new topic.

If you intended to correct an error in the post then please contact us.

Recommended Posts

By default in the fixed function pipeline for OpenGL things like position are actually 4 element vectors. Also I read about how when doing SIMD on vectors and things like that, processors have room for 4 element arrays.

I'm guessing sending things to OpenGL as 3 element vectors saves on bandwidth or something, but when writing actual shaders does it matter at all if I'm using vec3 or can I just use vec4 all over the place with no penalty? What about vec2 even?

Share this post


Link to post
Share on other sites
Advertisement
Depends on what part of the pipeline you are talking about, and the context in which you use the float3 or float4.

SIMD allows for typically 4 floating point operations to be performed simultaneously. In this regards, float4 is better than float3*
* but if you pack 4 float3s together (12 floats), you have 3 SIMD operations instead of 4 if you were treating the float3s as their own float4s (3 floats, padding, 3 floats padding, 3 floats, padding)

If you are talking about GPU, then yes the same principles still apply - but the compiler will generally fix this for you. Set yourself up some simple examples, then look at the assembly output of your shader compiler. Its even smart enough to realize that normalize(normalize(N)) is pointless :)

However, IIRC:
* vertex buffers are best done minimally to reduce bandwidth these days, as opposed to rigidly stick to register aligned strides
* vertex shader outputs (interpolator stage) is best packed into float4s as each output *is* its own register, and the compiler will not do this for you automatically as it has to be done consistently at each part of the pipeline (geo -> vertex, vertex -> pixel, etc)

Share this post


Link to post
Share on other sites
When sending vertex attribs, I would expect no difference. Hardware has been unpacking [font=courier new,courier,monospace]vec3[/font] for quite a while, you can bet it's full speed.
When we go out of GPU pipelines, most libraries dealing with [font=courier new,courier,monospace]vec3[/font] always allocate [font=courier new,courier,monospace]vec4[/font] instead to take advantage of aligned reads. While it is possible to use the "pack" trick pointed above, I have doubts its feasible in general.

Share this post


Link to post
Share on other sites
Every GPU register (with some exceptions that are not relevant here - such as loop counter registers) is already a 4-element vector so you're not getting any memory saving here. Interesting here to note that the old gl_TexCoord[n], etc, slots were also specified as 4-element vectors.

As a general rule, the GPU works very differently to your CPU, so what's relevant for one won't always be relevant - or even intuitive - for the other.

Where this does become useful is if you're hitting against the max number of register slots, as you could pack e.g. 2 vec2s into a single vec4 and get an extra slot that way. A good shader compiler should make this optimization for you, but I don't know if it's specified and I certainly wouldn't rely on it either way. Edited by mhagain

Share this post


Link to post
Share on other sites
-GPUs:
nowadays (on NVidia since G80/GTX8800 and ATI since GCN/7970) do not operate on vectors anymore, but on single elements, that way the compiler can easier optimize and a much higher utilization of the GPU is possible. in this place, using vec3 can be a benefit, as the compilers might sometimes not know that some vector elements are 0 or 1 and could be completely rejected (e.g. when those 'default'/'neutral' values come from constant registers). Registers are also organized as individual elements, saving space (if the compiler cannot), can further rise the utilization -> speed.
-CPUs:
if you do simple math, it all will be done in a scalar way usually. some compiler can vectorize the code, but whether you're using vec3 or vec4 can give you sometimes a boost or a hit, depending on what operations you are doing and if the compiler can detect what you intend to do. if it's a common pattern, it will vectorize it, no matter if vec3 or vec4.
if you're writing hand optimized vector code e.g. using SSE, it's usually critical to have vec4 code, vec3 leads to a lot of operations to reorganize the vector layout to vec4 before you do the math; basically, the overhead is more than the benefit in most simple cases.
-memory:
if you have tons of data and you're linearly reading it, it's 25% boost. if you have random reads and you mostly hit the cache, you increase the cached element count, which is also a big boost (it can be more than 25% speed, as those 25% more could be the amount of elements that were exceeding cache with vec4). If you have a lot of data and every read is random into your main memory, then it's probably slower, as in case of aligned vec4 elements, your cpu/gpu would read one cache line (64-256byte), but for vec3 elements, some would cross the cache line and you'd read twice. while the chances are quite low (12/64), the cost of a cache line read is quite high and your CPU/GPU is trying to hide that cost, so the first read might look like 50% or 25% speed loss (compared to cached reads), while the second might fully hit.
-DiskSpace
that's fully worth it, usually all kind of saving on disk will save you time, even if you do some funky decompression or conversion (e.g. using float16 instead of float32), you will have a saving, I would never waste space, even on SSDs.

Share this post


Link to post
Share on other sites
Sign in to follow this  

  • Advertisement