• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0

Does it save on performance/memory a whole lot to use vec3 instead of vec4?

4 posts in this topic

By default in the fixed function pipeline for OpenGL things like position are actually 4 element vectors. Also I read about how when doing SIMD on vectors and things like that, processors have room for 4 element arrays.

I'm guessing sending things to OpenGL as 3 element vectors saves on bandwidth or something, but when writing actual shaders does it matter at all if I'm using vec3 or can I just use vec4 all over the place with no penalty? What about vec2 even?

Share this post

Link to post
Share on other sites
Depends on what part of the pipeline you are talking about, and the context in which you use the float3 or float4.

SIMD allows for typically 4 floating point operations to be performed simultaneously. In this regards, float4 is better than float3*
* but if you pack 4 float3s together (12 floats), you have 3 SIMD operations instead of 4 if you were treating the float3s as their own float4s (3 floats, padding, 3 floats padding, 3 floats, padding)

If you are talking about GPU, then yes the same principles still apply - but the compiler will generally fix this for you. Set yourself up some simple examples, then look at the assembly output of your shader compiler. Its even smart enough to realize that normalize(normalize(N)) is pointless :)

However, IIRC:
* vertex buffers are best done minimally to reduce bandwidth these days, as opposed to rigidly stick to register aligned strides
* vertex shader outputs (interpolator stage) is best packed into float4s as each output *is* its own register, and the compiler will not do this for you automatically as it has to be done consistently at each part of the pipeline (geo -> vertex, vertex -> pixel, etc)

Share this post

Link to post
Share on other sites
When sending vertex attribs, I would expect no difference. Hardware has been unpacking [font=courier new,courier,monospace]vec3[/font] for quite a while, you can bet it's full speed.
When we go out of GPU pipelines, most libraries dealing with [font=courier new,courier,monospace]vec3[/font] always allocate [font=courier new,courier,monospace]vec4[/font] instead to take advantage of aligned reads. While it is possible to use the "pack" trick pointed above, I have doubts its feasible in general.

Share this post

Link to post
Share on other sites
Every GPU register (with some exceptions that are not relevant here - such as loop counter registers) is already a 4-element vector so you're not getting any memory saving here. Interesting here to note that the old gl_TexCoord[n], etc, slots were also specified as 4-element vectors.

As a general rule, the GPU works very differently to your CPU, so what's relevant for one won't always be relevant - or even intuitive - for the other.

Where this does become useful is if you're hitting against the max number of register slots, as you could pack e.g. 2 vec2s into a single vec4 and get an extra slot that way. A good shader compiler should make this optimization for you, but I don't know if it's specified and I certainly wouldn't rely on it either way. Edited by mhagain

Share this post

Link to post
Share on other sites
nowadays (on NVidia since G80/GTX8800 and ATI since GCN/7970) do not operate on vectors anymore, but on single elements, that way the compiler can easier optimize and a much higher utilization of the GPU is possible. in this place, using vec3 can be a benefit, as the compilers might sometimes not know that some vector elements are 0 or 1 and could be completely rejected (e.g. when those 'default'/'neutral' values come from constant registers). Registers are also organized as individual elements, saving space (if the compiler cannot), can further rise the utilization -> speed.
if you do simple math, it all will be done in a scalar way usually. some compiler can vectorize the code, but whether you're using vec3 or vec4 can give you sometimes a boost or a hit, depending on what operations you are doing and if the compiler can detect what you intend to do. if it's a common pattern, it will vectorize it, no matter if vec3 or vec4.
if you're writing hand optimized vector code e.g. using SSE, it's usually critical to have vec4 code, vec3 leads to a lot of operations to reorganize the vector layout to vec4 before you do the math; basically, the overhead is more than the benefit in most simple cases.
if you have tons of data and you're linearly reading it, it's 25% boost. if you have random reads and you mostly hit the cache, you increase the cached element count, which is also a big boost (it can be more than 25% speed, as those 25% more could be the amount of elements that were exceeding cache with vec4). If you have a lot of data and every read is random into your main memory, then it's probably slower, as in case of aligned vec4 elements, your cpu/gpu would read one cache line (64-256byte), but for vec3 elements, some would cross the cache line and you'd read twice. while the chances are quite low (12/64), the cost of a cache line read is quite high and your CPU/GPU is trying to hide that cost, so the first read might look like 50% or 25% speed loss (compared to cached reads), while the second might fully hit.
that's fully worth it, usually all kind of saving on disk will save you time, even if you do some funky decompression or conversion (e.g. using float16 instead of float32), you will have a saving, I would never waste space, even on SSDs.

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  
Followers 0

  • Similar Content

    • By fllwr0491
      I googled around but are unable to find source code or details of implementation.
      What keywords should I search for this topic?
      Things I would like to know:
      A. How to ensure that partially covered pixels are rasterized?
         Apparently by expanding each triangle by 1 pixel or so, rasterization problem is almost solved.
         But it will result in an unindexable triangle list without tons of overlaps. Will it incur a large performance penalty?
      B. A-buffer like bitmask needs a read-modiry-write operation.
         How to ensure proper synchronizations in GLSL?
         GLSL seems to only allow int32 atomics on image.
      C. Is there some simple ways to estimate coverage on-the-fly?
         In case I am to draw 2D shapes onto an exisitng target:
         1. A multi-pass whatever-buffer seems overkill.
         2. Multisampling could cost a lot memory though all I need is better coverage.
            Besides, I have to blit twice, if draw target is not multisampled.
    • By mapra99

      I am working on a recent project and I have been learning how to code in C# using OpenGL libraries for some graphics. I have achieved some quite interesting things using TAO Framework writing in Console Applications, creating a GLUT Window. But my problem now is that I need to incorporate the Graphics in a Windows Form so I can relate the objects that I render with some .NET Controls.

      To deal with this problem, I have seen in some forums that it's better to use OpenTK instead of TAO Framework, so I can use the glControl that OpenTK libraries offer. However, I haven't found complete articles, tutorials or source codes that help using the glControl or that may insert me into de OpenTK functions. Would somebody please share in this forum some links or files where I can find good documentation about this topic? Or may I use another library different of OpenTK?

    • By Solid_Spy
      Hello, I have been working on SH Irradiance map rendering, and I have been using a GLSL pixel shader to render SH irradiance to 2D irradiance maps for my static objects. I already have it working with 9 3D textures so far for the first 9 SH functions.
      In my GLSL shader, I have to send in 9 SH Coefficient 3D Texures that use RGBA8 as a pixel format. RGB being used for the coefficients for red, green, and blue, and the A for checking if the voxel is in use (for the 3D texture solidification shader to prevent bleeding).
      My problem is, I want to knock this number of textures down to something like 4 or 5. Getting even lower would be a godsend. This is because I eventually plan on adding more SH Coefficient 3D Textures for other parts of the game map (such as inside rooms, as opposed to the outside), to circumvent irradiance probe bleeding between rooms separated by walls. I don't want to reach the 32 texture limit too soon. Also, I figure that it would be a LOT faster.
      Is there a way I could, say, store 2 sets of SH Coefficients for 2 SH functions inside a texture with RGBA16 pixels? If so, how would I extract them from inside GLSL? Let me know if you have any suggestions ^^.
    • By KarimIO
      EDIT: I thought this was restricted to Attribute-Created GL contexts, but it isn't, so I rewrote the post.
      Hey guys, whenever I call SwapBuffers(hDC), I get a crash, and I get a "Too many posts were made to a semaphore." from Windows as I call SwapBuffers. What could be the cause of this?
      Update: No crash occurs if I don't draw, just clear and swap.
      static PIXELFORMATDESCRIPTOR pfd = // pfd Tells Windows How We Want Things To Be { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL PFD_DOUBLEBUFFER, // Must Support Double Buffering PFD_TYPE_RGBA, // Request An RGBA Format 32, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // 24Bit Z-Buffer (Depth Buffer) 0, // No Stencil Buffer 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; if (!(hDC = GetDC(windowHandle))) return false; unsigned int PixelFormat; if (!(PixelFormat = ChoosePixelFormat(hDC, &pfd))) return false; if (!SetPixelFormat(hDC, PixelFormat, &pfd)) return false; hRC = wglCreateContext(hDC); if (!hRC) { std::cout << "wglCreateContext Failed!\n"; return false; } if (wglMakeCurrent(hDC, hRC) == NULL) { std::cout << "Make Context Current Second Failed!\n"; return false; } ... // OGL Buffer Initialization glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glBindVertexArray(vao); glUseProgram(myprogram); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, (void *)indexStart); SwapBuffers(GetDC(window_handle));  
    • By Tchom
      Hey devs!
      I've been working on a OpenGL ES 2.0 android engine and I have begun implementing some simple (point) lighting. I had something fairly simple working, so I tried to get fancy and added color-tinting light. And it works great... with only one or two lights. Any more than that, the application drops about 15 frames per light added (my ideal is at least 4 or 5). I know implementing lighting is expensive, I just didn't think it was that expensive. I'm fairly new to the world of OpenGL and GLSL, so there is a good chance I've written some crappy shader code. If anyone had any feedback or tips on how I can optimize this code, please let me know.
      Vertex Shader
      uniform mat4 u_MVPMatrix; uniform mat4 u_MVMatrix; attribute vec4 a_Position; attribute vec3 a_Normal; attribute vec2 a_TexCoordinate; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { v_Position = vec3(u_MVMatrix * a_Position); v_TexCoordinate = a_TexCoordinate; v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0)); gl_Position = u_MVPMatrix * a_Position; } Fragment Shader
      precision mediump float; uniform vec4 u_LightPos["+numLights+"]; uniform vec4 u_LightColours["+numLights+"]; uniform float u_LightPower["+numLights+"]; uniform sampler2D u_Texture; varying vec3 v_Position; varying vec3 v_Normal; varying vec2 v_TexCoordinate; void main() { gl_FragColor = (texture2D(u_Texture, v_TexCoordinate)); float diffuse = 0.0; vec4 colourSum = vec4(1.0); for (int i = 0; i < "+numLights+"; i++) { vec3 toPointLight = vec3(u_LightPos[i]); float distance = length(toPointLight - v_Position); vec3 lightVector = normalize(toPointLight - v_Position); float diffuseDiff = 0.0; // The diffuse difference contributed from current light diffuseDiff = max(dot(v_Normal, lightVector), 0.0); diffuseDiff = diffuseDiff * (1.0 / (1.0 + ((1.0-u_LightPower[i])* distance * distance))); //Determine attenuatio diffuse += diffuseDiff; gl_FragColor.rgb *= vec3(1.0) / ((vec3(1.0) + ((vec3(1.0) - vec3(u_LightColours[i]))*diffuseDiff))); //The expensive part } diffuse += 0.1; //Add ambient light gl_FragColor.rgb *= diffuse; } Am I making any rookie mistakes? Or am I just being unrealistic about what I can do? Thanks in advance
  • Popular Now