• Announcements

    • khawk

      Download the Game Design and Indie Game Marketing Freebook   07/19/17

      GameDev.net and CRC Press have teamed up to bring a free ebook of content curated from top titles published by CRC Press. The freebook, Practices of Game Design & Indie Game Marketing, includes chapters from The Art of Game Design: A Book of Lenses, A Practical Guide to Indie Game Marketing, and An Architectural Approach to Level Design. The GameDev.net FreeBook is relevant to game designers, developers, and those interested in learning more about the challenges in game development. We know game development can be a tough discipline and business, so we picked several chapters from CRC Press titles that we thought would be of interest to you, the GameDev.net audience, in your journey to design, develop, and market your next game. The free ebook is available through CRC Press by clicking here. The Curated Books The Art of Game Design: A Book of Lenses, Second Edition, by Jesse Schell Presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, film, software engineering, theme park design, mathematics, anthropology, and more. Written by one of the world's top game designers, this book describes the deepest and most fundamental principles of game design, demonstrating how tactics used in board, card, and athletic games also work in video games. It provides practical instruction on creating world-class games that will be played again and again. View it here. A Practical Guide to Indie Game Marketing, by Joel Dreskin Marketing is an essential but too frequently overlooked or minimized component of the release plan for indie games. A Practical Guide to Indie Game Marketing provides you with the tools needed to build visibility and sell your indie games. With special focus on those developers with small budgets and limited staff and resources, this book is packed with tangible recommendations and techniques that you can put to use immediately. As a seasoned professional of the indie game arena, author Joel Dreskin gives you insight into practical, real-world experiences of marketing numerous successful games and also provides stories of the failures. View it here. An Architectural Approach to Level Design This is one of the first books to integrate architectural and spatial design theory with the field of level design. The book presents architectural techniques and theories for level designers to use in their own work. It connects architecture and level design in different ways that address the practical elements of how designers construct space and the experiential elements of how and why humans interact with this space. Throughout the text, readers learn skills for spatial layout, evoking emotion through gamespaces, and creating better levels through architectural theory. View it here. Learn more and download the ebook by clicking here. Did you know? GameDev.net and CRC Press also recently teamed up to bring GDNet+ Members up to a 20% discount on all CRC Press books. Learn more about this and other benefits here.
Sign in to follow this  
Followers 0
Hseptic

Rotating texture coordinates to animate multi-textured flare

4 posts in this topic

I have a "flare" texture(.dds) and an alpha texture (.bmp). I'm trying to use these with multi-texturing to create a blended flare image. I then put the final image onto each face of a cube. So far, I have accomplished this. However, the next step is what I have trouble understanding. I want to rotate both textures at different rates to create a flare animation. In turn, I must map the animation to each face of the cube like before. When I run my program, the textures are rotating in a circle instead of rotating about their own axes

Here is a screen shot:
[attachment=9405:flarecube.PNG]
Clearly this is not what I wanted.

Basically what I am doing is this: I create two D3DXVECTOR2s to be used as offsets. One for both textures. I then rotate them a bit each frame(at different rates). Lastly, I add both offsets in the vertex shader, and store the results in the cooresponding members of the outVS structure like this:
[CODE]
OutputVS TerrainMultiTexVS(float3 posL : POSITION0,
float3 normalL : NORMAL0,
float2 tex0: TEXCOORD0)
{

//
//omitted code
//

outVS.tex0 = tex0 + gTexOffset;
outVS.tex1 = tex0 + gBlendOffset;

// Done--return the output.
return outVS;
}
[/CODE]
Note how "tex0" is used in both additions. That is because "tex0" is the only set of texture coordinates that is fed into the vertex shader.

Again, I don't want them orbiting the center of the faces in a circle. I want them to simply rotate about their own axes. (which is of course the center of each face)


Here is some source code...

[CODE]
// this is from Vertex.h
struct VertexPNT
{
VertexPNT()
:pos(0.0f, 0.0f, 0.0f),
normal(0.0f, 0.0f, 0.0f),
tex0(0.0f, 0.0f){}
VertexPNT(float x, float y, float z,
float nx, float ny, float nz,
float u, float v):pos(x,y,z), normal(nx,ny,nz), tex0(u,v){}
VertexPNT(const D3DXVECTOR3& v, const D3DXVECTOR3& n, const D3DXVECTOR2& uv)
:pos(v),normal(n), tex0(uv){}
D3DXVECTOR3 pos;
D3DXVECTOR3 normal;
D3DXVECTOR2 tex0;
static IDirect3DVertexDeclaration9* Decl;
};
[/CODE]

[CODE]
// this is from Vertex.cpp
D3DVERTEXELEMENT9 VertexPNTElements[] =
{
{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
{0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 0},
{0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0},
D3DDECL_END()
};
HR(gd3dDevice->CreateVertexDeclaration(VertexPNTElements, &VertexPNT::Decl));
[/CODE]

[CODE]
// found in class definition
D3DXHANDLE mhTexOffset;
D3DXHANDLE mhBlendOffset;
D3DXVECTOR2 mTexOffset;
D3DXVECTOR2 mBlendOffset;
float angle_Tex;
float angle_Blend;
D3DXMATRIX Mt;
D3DXMATRIX Mb;

[/CODE]

[CODE]
// found in constructor
angle_Tex = 0.0f;
angle_Blend = 0.0f;
mTexOffset = D3DXVECTOR2(0.0f, 0.0f);
mBlendOffset = D3DXVECTOR2(0.0f, 0.0f);

HR(D3DXCreateTextureFromFile(gd3dDevice, "flare.dds", &mTex));
HR(D3DXCreateTextureFromFile(gd3dDevice, "flarealpha.bmp", &mBlend));
[/CODE]

[CODE]
void FlareCubeDemo::updateScene(float dt)
{
mGfxStats->update(dt);
// Get snapshot of input devices.
gDInput->poll();
// Check input.
if( gDInput->keyDown(DIK_W) )
mCameraHeight += 25.0f * dt;
if( gDInput->keyDown(DIK_S) )
mCameraHeight -= 25.0f * dt;
// Divide by 50 to make mouse less sensitive.
mCameraRotationY += gDInput->mouseDX() / 100.0f;
mCameraRadius += gDInput->mouseDY() / 25.0f;
// If we rotate over 360 degrees, just roll back to 0
if( fabsf(mCameraRotationY) >= 2.0f * D3DX_PI )
mCameraRotationY = 0.0f;
// Don't let radius get too small.
if( mCameraRadius < 5.0f )
mCameraRadius = 5.0f;
angle_Tex = 0.001;
angle_Blend = 0.005;
// The camera position/orientation relative to world space can
// change every frame based on input, so we need to rebuild the
// view matrix every frame with the latest changes.
buildViewMtx();

mTexOffset += D3DXVECTOR2(-0.5f, -0.5f);
mBlendOffset += D3DXVECTOR2(-0.5f, -0.5f);
D3DXMatrixRotationZ(&Mt, angle_Tex);
D3DXMatrixRotationZ(&Mb, angle_Blend);
D3DXVec2TransformCoord(&mTexOffset, &mTexOffset, &Mt);
D3DXVec2TransformCoord(&mBlendOffset, &mBlendOffset, &Mb);

mTexOffset += D3DXVECTOR2(0.5f, 0.5f);
mBlendOffset += D3DXVECTOR2(0.5f, 0.5f);
}

void FlareCubeDemo::drawScene()
{
// Clear the backbuffer and depth buffer.
HR(gd3dDevice->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xffeeeeee, 1.0f, 0));
HR(gd3dDevice->BeginScene());
// Setup the rendering FX
HR(mFX->SetTechnique(mhTech));
HR(mFX->SetMatrix(mhWVP, &(mWorld*mView*mProj)));
D3DXMATRIX worldInvTrans;
D3DXMatrixInverse(&worldInvTrans, 0, &mWorld);
D3DXMatrixTranspose(&worldInvTrans, &worldInvTrans);
HR(mFX->SetMatrix(mhWorldInvTrans, &worldInvTrans));
HR(mFX->SetValue(mhLightVecW, &mLightVecW, sizeof(D3DXVECTOR3)));
HR(mFX->SetValue(mhDiffuseMtrl, &mDiffuseMtrl, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhDiffuseLight, &mDiffuseLight, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhAmbientMtrl, &mAmbientMtrl, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhAmbientLight, &mAmbientLight, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhSpecularLight, &mSpecularLight, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhSpecularMtrl, &mSpecularMtrl, sizeof(D3DXCOLOR)));
HR(mFX->SetFloat(mhSpecularPower, mSpecularPower));
HR(mFX->SetMatrix(mhWorld, &mWorld));
HR(mFX->SetTexture(mhTex, mTex));
HR(mFX->SetTexture(mhBlend, mBlend));
HR(mFX->SetValue(mhTexOffset, &mTexOffset, sizeof(D3DXVECTOR2)));
HR(mFX->SetValue(mhBlendOffset, &mBlendOffset, sizeof(D3DXVECTOR2)));
HR(gd3dDevice->SetVertexDeclaration(VertexPNT::Decl));
HR(gd3dDevice->SetStreamSource(0, mBoxVB, 0, sizeof(VertexPNT)));
HR(gd3dDevice->SetIndices(mBoxIB));
// Begin passes.
UINT numPasses = 0;
HR(mFX->Begin(&numPasses, 0));
for(UINT i = 0; i < numPasses; ++i)
{
HR(mFX->BeginPass(i));

HR(gd3dDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, 24, 0, 12));
HR(mFX->EndPass());
}
HR(mFX->End());

mGfxStats->display();
HR(gd3dDevice->EndScene());
// Present the backbuffer.
HR(gd3dDevice->Present(0, 0, 0, 0));
}
void FlareCubeDemo::buildBoxGeometry()
{
// Create the vertex buffer.
HR(gd3dDevice->CreateVertexBuffer(24 * sizeof(VertexPNT), D3DUSAGE_WRITEONLY,
0, D3DPOOL_MANAGED, &mBoxVB, 0));
// Write box vertices to the vertex buffer.
VertexPNT* v = 0;
HR(mBoxVB->Lock(0, 0, (void**)&v, 0));
// Fill in the front face vertex data.
v[0] = VertexPNT(-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f);
v[1] = VertexPNT(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f);
v[2] = VertexPNT( 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f);
v[3] = VertexPNT( 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f);
// Fill in the back face vertex data.
v[4] = VertexPNT(-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f);
v[5] = VertexPNT( 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f);
v[6] = VertexPNT( 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f);
v[7] = VertexPNT(-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f);
// Fill in the top face vertex data.
v[8] = VertexPNT(-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f);
v[9] = VertexPNT(-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f);
v[10] = VertexPNT( 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f);
v[11] = VertexPNT( 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f);
// Fill in the bottom face vertex data.
v[12] = VertexPNT(-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f);
v[13] = VertexPNT( 1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f);
v[14] = VertexPNT( 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f);
v[15] = VertexPNT(-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f);
// Fill in the left face vertex data.
v[16] = VertexPNT(-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f);
v[17] = VertexPNT(-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f);
v[18] = VertexPNT(-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f);
v[19] = VertexPNT(-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f);
// Fill in the right face vertex data.
v[20] = VertexPNT( 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f);
v[21] = VertexPNT( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f);
v[22] = VertexPNT( 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f);
v[23] = VertexPNT( 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f);
HR(mBoxVB->Unlock());

// Create the vertex buffer.
HR(gd3dDevice->CreateIndexBuffer(36 * sizeof(WORD), D3DUSAGE_WRITEONLY,
D3DFMT_INDEX16, D3DPOOL_MANAGED, &mBoxIB, 0));
// Write box indices to the index buffer.
WORD* i = 0;
HR(mBoxIB->Lock(0, 0, (void**)&i, 0));
// Fill in the front face index data
i[0] = 0; i[1] = 1; i[2] = 2;
i[3] = 0; i[4] = 2; i[5] = 3;
// Fill in the back face index data
i[6] = 4; i[7] = 5; i[8] = 6;
i[9] = 4; i[10] = 6; i[11] = 7;
// Fill in the top face index data
i[12] = 8; i[13] = 9; i[14] = 10;
i[15] = 8; i[16] = 10; i[17] = 11;
// Fill in the bottom face index data
i[18] = 12; i[19] = 13; i[20] = 14;
i[21] = 12; i[22] = 14; i[23] = 15;
// Fill in the left face index data
i[24] = 16; i[25] = 17; i[26] = 18;
i[27] = 16; i[28] = 18; i[29] = 19;
// Fill in the right face index data
i[30] = 20; i[31] = 21; i[32] = 22;
i[33] = 20; i[34] = 22; i[35] = 23;
HR(mBoxIB->Unlock());
}
[/CODE]


And finally, the effect file in its entirety...

[CODE]
// CHAPTER 11 11.13 EXERCISE 6
// ANIMATED FLARE ON CUBE
uniform extern float4x4 gWorld;
uniform extern float4x4 gWorldInvTrans;
uniform extern float4x4 gWVP;
uniform extern float4 gAmbientMtrl;
uniform extern float4 gAmbientLight;
uniform extern float4 gDiffuseMtrl;
uniform extern float4 gDiffuseLight;
uniform extern float4 gSpecularMtrl;
uniform extern float4 gSpecularLight;
uniform extern float gSpecularPower;
uniform extern float3 gLightVecW;
uniform extern float3 gEyePosW;
uniform extern texture gTex;
uniform extern texture gBlend;
uniform extern float2 gTexOffset;
uniform extern float2 gBlendOffset;
// Use Anisotropic filtering since when we are low to the ground, the
// ground plane is near a 90 degree angle with our view direction.
sampler Tex0S = sampler_state
{
Texture = <gTex>;
MinFilter = Anisotropic;
MagFilter = LINEAR;
MipFilter = LINEAR;
MaxAnisotropy = 8;
AddressU = WRAP;
AddressV = WRAP;
};
sampler BlendS = sampler_state
{
Texture = <gBlend>;
MinFilter = LINEAR;
MagFilter = LINEAR;
MipFilter = LINEAR;
AddressU = WRAP;
AddressV = WRAP;
};

struct OutputVS
{
float4 posH : POSITION0;
float4 diffuse : COLOR0;
float4 spec : COLOR1;
float2 tex0 : TEXCOORD0;
float2 tex1 : TEXCOORD1;

};
OutputVS MultiTexVS(float3 posL : POSITION0,
float3 normalL : NORMAL0,
float2 tex0: TEXCOORD0)
{
// Zero out our output.
OutputVS outVS = (OutputVS)0;

// Transform normal to world space.
float3 normalW = mul(float4(normalL, 0.0f), gWorldInvTrans).xyz;
normalW = normalize(normalW);

// Transform vertex position to world space.
float3 posW = mul(float4(posL, 1.0f), gWorld).xyz;

//=======================================================
// Compute the color: Equation 10.3.

// Compute the vector from the vertex to the eye position.
float3 toEye = normalize(gEyePosW - posW);

// Compute the reflection vector.
float3 r = reflect(-gLightVecW, normalW);

// Determine how much (if any) specular light makes it into the eye.
float t = pow(max(dot(r, toEye), 0.0f), gSpecularPower);

// Determine the diffuse light intensity that strikes the vertex.
float s = max(dot(gLightVecW, normalW), 0.0f);

// Compute the ambient, diffuse and specular terms separatly.
float3 spec = t*(gSpecularMtrl*gSpecularLight).rgb;
float3 diffuse = s*(gDiffuseMtrl*gDiffuseLight).rgb;
float3 ambient = gAmbientMtrl*gAmbientLight;

// Sum all the terms together and copy over the diffuse alpha.
outVS.diffuse.rgb = ambient + diffuse;
outVS.diffuse.a = gDiffuseMtrl.a;
outVS.spec = float4(spec, 0.0f);
//=======================================================

// Transform to homogeneous clip space.
outVS.posH = mul(float4(posL, 1.0f), gWVP);

outVS.tex0 = tex0 + gTexOffset;
outVS.tex1 = tex0 + gBlendOffset;

// Done--return the output.
return outVS;
}
float4 MultiTexPS(float4 diffuse : COLOR0,
float4 spec : COLOR1,
float2 tex0 : TEXCOORD0,
float2 tex1 : TEXCOORD1) : COLOR
{
// Layer maps are tiled
float3 c0 = tex2D(Tex0S, tex0).rgb;

// Blendmap is not tiled.
float3 B = tex2D(BlendS, tex1).rgb;

// Scale the colors by each layer by its corresponding weight
// stored in the blendmap.
c0 *= B;

// Sum the colors and modulate with the lighting color.
float3 final = (c0) * diffuse.rgb;

return float4(final + spec, diffuse.a);
}
technique MultiTexTech
{
pass P0
{
// Specify the vertex and pixel shader associated with this pass.
vertexShader = compile vs_2_0 TerrainMultiTexVS();
pixelShader = compile ps_2_0 TerrainMultiTexPS();
}
}
[/CODE]

What am I doing wrong? Do I have to redesign the whole thing usings two sets of texture coordinates instead of using offsets?
0

Share this post


Link to post
Share on other sites
Note that it only "appeared" to me that the textures are going around in a circle about the plane of each face. It is possible that I am seeing it wrong and that it is doing something entirely different. That could explain why the screen shot looks the way it is. Either way though, it's still not what I wanted, and I must be doing something wrong.
0

Share this post


Link to post
Share on other sites
Won't somebody help me? Please note, this is [i]not[/i] homework. I am simply studying this on my own for fun.
0

Share this post


Link to post
Share on other sites
[code]
outVS.tex0 = tex0 + gTexOffset;
outVS.tex1 = tex0 + gBlendOffset;
[/code]
You're not really rotating here, just translating. Use a proper transformation, something like:

[code]
outVS.tex0 = mul(float4(tex0, 0, 1), gTexTransform1).xy;
outVS.tex1 = mul(float4(tex0, 0, 1), gTexTransform2).xy;
[/code]
... and provide the rotation matrices just like you do with gWVP.

Edit: Correction: added .xy to suppress truncation warning.

Edit2: No feedback... entering lurk-mode. Edited by unbird
0

Share this post


Link to post
Share on other sites
Thanks unbird. I did what you suggested and everything works as expected now.

P.S. I will try to make a point of giving feedback in the future.
0

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!


Register a new account

Sign in

Already have an account? Sign in here.


Sign In Now
Sign in to follow this  
Followers 0