Rotating texture coordinates to animate multi-textured flare

Started by
3 comments, last by Hseptic 11 years, 10 months ago
I have a "flare" texture(.dds) and an alpha texture (.bmp). I'm trying to use these with multi-texturing to create a blended flare image. I then put the final image onto each face of a cube. So far, I have accomplished this. However, the next step is what I have trouble understanding. I want to rotate both textures at different rates to create a flare animation. In turn, I must map the animation to each face of the cube like before. When I run my program, the textures are rotating in a circle instead of rotating about their own axes

Here is a screen shot:
[attachment=9405:flarecube.PNG]
Clearly this is not what I wanted.

Basically what I am doing is this: I create two D3DXVECTOR2s to be used as offsets. One for both textures. I then rotate them a bit each frame(at different rates). Lastly, I add both offsets in the vertex shader, and store the results in the cooresponding members of the outVS structure like this:

OutputVS TerrainMultiTexVS(float3 posL : POSITION0,
float3 normalL : NORMAL0,
float2 tex0: TEXCOORD0)
{

//
//omitted code
//

outVS.tex0 = tex0 + gTexOffset;
outVS.tex1 = tex0 + gBlendOffset;

// Done--return the output.
return outVS;
}

Note how "tex0" is used in both additions. That is because "tex0" is the only set of texture coordinates that is fed into the vertex shader.

Again, I don't want them orbiting the center of the faces in a circle. I want them to simply rotate about their own axes. (which is of course the center of each face)


Here is some source code...


// this is from Vertex.h
struct VertexPNT
{
VertexPNT()
:pos(0.0f, 0.0f, 0.0f),
normal(0.0f, 0.0f, 0.0f),
tex0(0.0f, 0.0f){}
VertexPNT(float x, float y, float z,
float nx, float ny, float nz,
float u, float v):pos(x,y,z), normal(nx,ny,nz), tex0(u,v){}
VertexPNT(const D3DXVECTOR3& v, const D3DXVECTOR3& n, const D3DXVECTOR2& uv)
:pos(v),normal(n), tex0(uv){}
D3DXVECTOR3 pos;
D3DXVECTOR3 normal;
D3DXVECTOR2 tex0;
static IDirect3DVertexDeclaration9* Decl;
};



// this is from Vertex.cpp
D3DVERTEXELEMENT9 VertexPNTElements[] =
{
{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
{0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 0},
{0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0},
D3DDECL_END()
};
HR(gd3dDevice->CreateVertexDeclaration(VertexPNTElements, &VertexPNT::Decl));



// found in class definition
D3DXHANDLE mhTexOffset;
D3DXHANDLE mhBlendOffset;
D3DXVECTOR2 mTexOffset;
D3DXVECTOR2 mBlendOffset;
float angle_Tex;
float angle_Blend;
D3DXMATRIX Mt;
D3DXMATRIX Mb;




// found in constructor
angle_Tex = 0.0f;
angle_Blend = 0.0f;
mTexOffset = D3DXVECTOR2(0.0f, 0.0f);
mBlendOffset = D3DXVECTOR2(0.0f, 0.0f);

HR(D3DXCreateTextureFromFile(gd3dDevice, "flare.dds", &mTex));
HR(D3DXCreateTextureFromFile(gd3dDevice, "flarealpha.bmp", &mBlend));



void FlareCubeDemo::updateScene(float dt)
{
mGfxStats->update(dt);
// Get snapshot of input devices.
gDInput->poll();
// Check input.
if( gDInput->keyDown(DIK_W) )
mCameraHeight += 25.0f * dt;
if( gDInput->keyDown(DIK_S) )
mCameraHeight -= 25.0f * dt;
// Divide by 50 to make mouse less sensitive.
mCameraRotationY += gDInput->mouseDX() / 100.0f;
mCameraRadius += gDInput->mouseDY() / 25.0f;
// If we rotate over 360 degrees, just roll back to 0
if( fabsf(mCameraRotationY) >= 2.0f * D3DX_PI )
mCameraRotationY = 0.0f;
// Don't let radius get too small.
if( mCameraRadius < 5.0f )
mCameraRadius = 5.0f;
angle_Tex = 0.001;
angle_Blend = 0.005;
// The camera position/orientation relative to world space can
// change every frame based on input, so we need to rebuild the
// view matrix every frame with the latest changes.
buildViewMtx();

mTexOffset += D3DXVECTOR2(-0.5f, -0.5f);
mBlendOffset += D3DXVECTOR2(-0.5f, -0.5f);
D3DXMatrixRotationZ(&Mt, angle_Tex);
D3DXMatrixRotationZ(&Mb, angle_Blend);
D3DXVec2TransformCoord(&mTexOffset, &mTexOffset, &Mt);
D3DXVec2TransformCoord(&mBlendOffset, &mBlendOffset, &Mb);

mTexOffset += D3DXVECTOR2(0.5f, 0.5f);
mBlendOffset += D3DXVECTOR2(0.5f, 0.5f);
}

void FlareCubeDemo::drawScene()
{
// Clear the backbuffer and depth buffer.
HR(gd3dDevice->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xffeeeeee, 1.0f, 0));
HR(gd3dDevice->BeginScene());
// Setup the rendering FX
HR(mFX->SetTechnique(mhTech));
HR(mFX->SetMatrix(mhWVP, &(mWorld*mView*mProj)));
D3DXMATRIX worldInvTrans;
D3DXMatrixInverse(&worldInvTrans, 0, &mWorld);
D3DXMatrixTranspose(&worldInvTrans, &worldInvTrans);
HR(mFX->SetMatrix(mhWorldInvTrans, &worldInvTrans));
HR(mFX->SetValue(mhLightVecW, &mLightVecW, sizeof(D3DXVECTOR3)));
HR(mFX->SetValue(mhDiffuseMtrl, &mDiffuseMtrl, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhDiffuseLight, &mDiffuseLight, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhAmbientMtrl, &mAmbientMtrl, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhAmbientLight, &mAmbientLight, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhSpecularLight, &mSpecularLight, sizeof(D3DXCOLOR)));
HR(mFX->SetValue(mhSpecularMtrl, &mSpecularMtrl, sizeof(D3DXCOLOR)));
HR(mFX->SetFloat(mhSpecularPower, mSpecularPower));
HR(mFX->SetMatrix(mhWorld, &mWorld));
HR(mFX->SetTexture(mhTex, mTex));
HR(mFX->SetTexture(mhBlend, mBlend));
HR(mFX->SetValue(mhTexOffset, &mTexOffset, sizeof(D3DXVECTOR2)));
HR(mFX->SetValue(mhBlendOffset, &mBlendOffset, sizeof(D3DXVECTOR2)));
HR(gd3dDevice->SetVertexDeclaration(VertexPNT::Decl));
HR(gd3dDevice->SetStreamSource(0, mBoxVB, 0, sizeof(VertexPNT)));
HR(gd3dDevice->SetIndices(mBoxIB));
// Begin passes.
UINT numPasses = 0;
HR(mFX->Begin(&numPasses, 0));
for(UINT i = 0; i < numPasses; ++i)
{
HR(mFX->BeginPass(i));

HR(gd3dDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, 24, 0, 12));
HR(mFX->EndPass());
}
HR(mFX->End());

mGfxStats->display();
HR(gd3dDevice->EndScene());
// Present the backbuffer.
HR(gd3dDevice->Present(0, 0, 0, 0));
}
void FlareCubeDemo::buildBoxGeometry()
{
// Create the vertex buffer.
HR(gd3dDevice->CreateVertexBuffer(24 * sizeof(VertexPNT), D3DUSAGE_WRITEONLY,
0, D3DPOOL_MANAGED, &mBoxVB, 0));
// Write box vertices to the vertex buffer.
VertexPNT* v = 0;
HR(mBoxVB->Lock(0, 0, (void**)&v, 0));
// Fill in the front face vertex data.
v[0] = VertexPNT(-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f);
v[1] = VertexPNT(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f);
v[2] = VertexPNT( 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f);
v[3] = VertexPNT( 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f);
// Fill in the back face vertex data.
v[4] = VertexPNT(-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f);
v[5] = VertexPNT( 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f);
v[6] = VertexPNT( 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f);
v[7] = VertexPNT(-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f);
// Fill in the top face vertex data.
v[8] = VertexPNT(-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f);
v[9] = VertexPNT(-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f);
v[10] = VertexPNT( 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f);
v[11] = VertexPNT( 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f);
// Fill in the bottom face vertex data.
v[12] = VertexPNT(-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f);
v[13] = VertexPNT( 1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f);
v[14] = VertexPNT( 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f);
v[15] = VertexPNT(-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f);
// Fill in the left face vertex data.
v[16] = VertexPNT(-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f);
v[17] = VertexPNT(-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f);
v[18] = VertexPNT(-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f);
v[19] = VertexPNT(-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f);
// Fill in the right face vertex data.
v[20] = VertexPNT( 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f);
v[21] = VertexPNT( 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f);
v[22] = VertexPNT( 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f);
v[23] = VertexPNT( 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f);
HR(mBoxVB->Unlock());

// Create the vertex buffer.
HR(gd3dDevice->CreateIndexBuffer(36 * sizeof(WORD), D3DUSAGE_WRITEONLY,
D3DFMT_INDEX16, D3DPOOL_MANAGED, &mBoxIB, 0));
// Write box indices to the index buffer.
WORD* i = 0;
HR(mBoxIB->Lock(0, 0, (void**)&i, 0));
// Fill in the front face index data
i[0] = 0; i[1] = 1; i[2] = 2;
i[3] = 0; i[4] = 2; i[5] = 3;
// Fill in the back face index data
i[6] = 4; i[7] = 5; i[8] = 6;
i[9] = 4; i[10] = 6; i[11] = 7;
// Fill in the top face index data
i[12] = 8; i[13] = 9; i[14] = 10;
i[15] = 8; i[16] = 10; i[17] = 11;
// Fill in the bottom face index data
i[18] = 12; i[19] = 13; i[20] = 14;
i[21] = 12; i[22] = 14; i[23] = 15;
// Fill in the left face index data
i[24] = 16; i[25] = 17; i[26] = 18;
i[27] = 16; i[28] = 18; i[29] = 19;
// Fill in the right face index data
i[30] = 20; i[31] = 21; i[32] = 22;
i[33] = 20; i[34] = 22; i[35] = 23;
HR(mBoxIB->Unlock());
}



And finally, the effect file in its entirety...


// CHAPTER 11 11.13 EXERCISE 6
// ANIMATED FLARE ON CUBE
uniform extern float4x4 gWorld;
uniform extern float4x4 gWorldInvTrans;
uniform extern float4x4 gWVP;
uniform extern float4 gAmbientMtrl;
uniform extern float4 gAmbientLight;
uniform extern float4 gDiffuseMtrl;
uniform extern float4 gDiffuseLight;
uniform extern float4 gSpecularMtrl;
uniform extern float4 gSpecularLight;
uniform extern float gSpecularPower;
uniform extern float3 gLightVecW;
uniform extern float3 gEyePosW;
uniform extern texture gTex;
uniform extern texture gBlend;
uniform extern float2 gTexOffset;
uniform extern float2 gBlendOffset;
// Use Anisotropic filtering since when we are low to the ground, the
// ground plane is near a 90 degree angle with our view direction.
sampler Tex0S = sampler_state
{
Texture = <gTex>;
MinFilter = Anisotropic;
MagFilter = LINEAR;
MipFilter = LINEAR;
MaxAnisotropy = 8;
AddressU = WRAP;
AddressV = WRAP;
};
sampler BlendS = sampler_state
{
Texture = <gBlend>;
MinFilter = LINEAR;
MagFilter = LINEAR;
MipFilter = LINEAR;
AddressU = WRAP;
AddressV = WRAP;
};

struct OutputVS
{
float4 posH : POSITION0;
float4 diffuse : COLOR0;
float4 spec : COLOR1;
float2 tex0 : TEXCOORD0;
float2 tex1 : TEXCOORD1;

};
OutputVS MultiTexVS(float3 posL : POSITION0,
float3 normalL : NORMAL0,
float2 tex0: TEXCOORD0)
{
// Zero out our output.
OutputVS outVS = (OutputVS)0;

// Transform normal to world space.
float3 normalW = mul(float4(normalL, 0.0f), gWorldInvTrans).xyz;
normalW = normalize(normalW);

// Transform vertex position to world space.
float3 posW = mul(float4(posL, 1.0f), gWorld).xyz;

//=======================================================
// Compute the color: Equation 10.3.

// Compute the vector from the vertex to the eye position.
float3 toEye = normalize(gEyePosW - posW);

// Compute the reflection vector.
float3 r = reflect(-gLightVecW, normalW);

// Determine how much (if any) specular light makes it into the eye.
float t = pow(max(dot(r, toEye), 0.0f), gSpecularPower);

// Determine the diffuse light intensity that strikes the vertex.
float s = max(dot(gLightVecW, normalW), 0.0f);

// Compute the ambient, diffuse and specular terms separatly.
float3 spec = t*(gSpecularMtrl*gSpecularLight).rgb;
float3 diffuse = s*(gDiffuseMtrl*gDiffuseLight).rgb;
float3 ambient = gAmbientMtrl*gAmbientLight;

// Sum all the terms together and copy over the diffuse alpha.
outVS.diffuse.rgb = ambient + diffuse;
outVS.diffuse.a = gDiffuseMtrl.a;
outVS.spec = float4(spec, 0.0f);
//=======================================================

// Transform to homogeneous clip space.
outVS.posH = mul(float4(posL, 1.0f), gWVP);

outVS.tex0 = tex0 + gTexOffset;
outVS.tex1 = tex0 + gBlendOffset;

// Done--return the output.
return outVS;
}
float4 MultiTexPS(float4 diffuse : COLOR0,
float4 spec : COLOR1,
float2 tex0 : TEXCOORD0,
float2 tex1 : TEXCOORD1) : COLOR
{
// Layer maps are tiled
float3 c0 = tex2D(Tex0S, tex0).rgb;

// Blendmap is not tiled.
float3 B = tex2D(BlendS, tex1).rgb;

// Scale the colors by each layer by its corresponding weight
// stored in the blendmap.
c0 *= B;

// Sum the colors and modulate with the lighting color.
float3 final = (c0) * diffuse.rgb;

return float4(final + spec, diffuse.a);
}
technique MultiTexTech
{
pass P0
{
// Specify the vertex and pixel shader associated with this pass.
vertexShader = compile vs_2_0 TerrainMultiTexVS();
pixelShader = compile ps_2_0 TerrainMultiTexPS();
}
}


What am I doing wrong? Do I have to redesign the whole thing usings two sets of texture coordinates instead of using offsets?
Advertisement
Note that it only "appeared" to me that the textures are going around in a circle about the plane of each face. It is possible that I am seeing it wrong and that it is doing something entirely different. That could explain why the screen shot looks the way it is. Either way though, it's still not what I wanted, and I must be doing something wrong.
Won't somebody help me? Please note, this is not homework. I am simply studying this on my own for fun.

outVS.tex0 = tex0 + gTexOffset;
outVS.tex1 = tex0 + gBlendOffset;

You're not really rotating here, just translating. Use a proper transformation, something like:


outVS.tex0 = mul(float4(tex0, 0, 1), gTexTransform1).xy;
outVS.tex1 = mul(float4(tex0, 0, 1), gTexTransform2).xy;

... and provide the rotation matrices just like you do with gWVP.

Edit: Correction: added .xy to suppress truncation warning.

Edit2: No feedback... entering lurk-mode.
Thanks unbird. I did what you suggested and everything works as expected now.

P.S. I will try to make a point of giving feedback in the future.

This topic is closed to new replies.

Advertisement